Do you want to publish a course? Click here

The role of collective motion in examples of coarsening and self-assembly

237   0   0.0 ( 0 )
 Added by Stephen Whitelam
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The simplest prescription for building a patterned structure from its constituents is to add particles, one at a time, to an appropriate template. However, self-organizing molecular and colloidal systems in nature can evolve in much more hierarchical ways. Specifically, constituents (or clusters of constituents) may aggregate to form clusters (or clusters of clusters) that serve as building blocks for later stages of assembly. Here we evaluate the character and consequences of such collective motion in a set of prototypical assembly processes. We do so using computer simulations in which a systems capacity for hierarchical dynamics can be controlled systematically. By explicitly allowing or suppressing collective motion, we quantify its effects. We find that coarsening within a two dimensional attractive lattice gas (and an analogous off-lattice model in three dimensions) is naturally dominated by collective motion over a broad range of temperatures and densities. Under such circumstances, cluster mobility inhibits the development of uniform coexisting phases, especially when macroscopic segregation is strongly favored by thermodynamics. By contrast, the assembly of model viral capsids is not frustrated but is instead facilitated by collective moves, which promote the orderly binding of intermediates consisting of several monomers.



rate research

Read More

Within simulations of molecules deposited on a surface we show that neuroevolutionary learning can design particles and time-dependent protocols to promote self-assembly, without input from physical concepts such as thermal equilibrium or mechanical stability and without prior knowledge of candidate or competing structures. The learning algorithm is capable of both directed and exploratory design: it can assemble a material with a user-defined property, or search for novelty in the space of specified order parameters. In the latter mode it explores the space of what can be made rather than the space of structures that are low in energy but not necessarily kinetically accessible.
61 - Stephen Whitelam 2016
A challenge of molecular self-assembly is to understand how to design particles that self-assemble into a desired structure and not any of a potentially large number of undesired structures. Here we use simulation to show that a strategy of minimal positive design allows the self-assembly of networks equivalent to the 8 semiregular Archimedean tilings of the plane, structures not previously realized in simulation. This strategy consists of identifying the fewest distinct types of interparticle interaction that appear in the desired structure, and does not require enumeration of the many possible undesired structures. The resulting particles, which self-assemble into the desired networks, possess DNA-like selectivity of their interactions. Assembly of certain molecular networks may therefore require such selectivity.
Langevin equations for the self-thermophoretic dynamics of Janus motors partially coated with an absorbing layer that is heated by a radiation field are presented. The derivation of these equations is based on fluctuating hydrodynamics and radiative heat transfer theory involving stochastic equations for bulk phases and surface processes that are consistent with microscopic reversibility. Expressions for the self-thermophoretic force and torque for arbitrary slip boundary conditions are obtained. The overdamped Langevin equations for the colloid displacement and radiative heat transfer provide expressions for the self-thermophoretic velocity and its reciprocal contribution where an external force can influence the radiative heat transfer. A nonequilibrium fluctuation formula is also derived and shows how the probability density of the Janus particle displacement and radiation energy transfer during the time interval [0,t] are related to the mechanical and thermal affinities that characterize the nonequilibrium system state.
We review a few representative examples of granular experiments or models where phase separation, accompanied by domain coarsening, is a relevant phenomenon. We first elucidate the intrinsic non-equilibrium, or athermal, nature of granular media. Thereafter, dilute systems, the so-called granular gases are discussed: idealized kinetic models, such as the gas of inelastic hard spheres in the cooling regime, are the optimal playground to study the slow growth of correlated structures, e.g. shear patterns, vortices and clusters. In fluidized experiments, liquid-gas or solid-gas separations have been observed. In the case of monolayers of particles, phase coexistence and coarsening appear in several different setups, with mechanical or electrostatic energy input. Phenomenological models describe, even quantitatively, several experimental measures, both for the coarsening dynamics and for the dynamic transition between different granular phases. The origin of the underlying bistability is in general related to negative compressibility from granular hydrodynamics computations, even if the understanding of the mechanism is far from complete. A relevant problem, with important industrial applications, is related to the demixing or segregation of mixtures, for instance in rotating tumblers or on horizontally vibrated plates. Finally, the problem of compaction of highly dense granular materials, which has many important applications, is usually described in terms of coarsening dynamics: there, bubbles of mis-aligned grains evaporate, allowing the coalescence of optimally arranged islands and a progressive reduction of total occupied volume.
We review the observations and the basic laws describing the essential aspects of collective motion -- being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا