Do you want to publish a course? Click here

Traffic of cytoskeletal motors with disordered attachment rates

204   0   0.0 ( 0 )
 Added by Rosemary Harris
 Publication date 2010
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Motivated by experimental results on the interplay between molecular motors and tau proteins, we extend lattice-based models of intracellular transport to include a second species of particle which locally influences the motor-filament attachment rate. We consider various exactly solvable limits of a stochastic multi-particle model before focusing on the low-motor-density regime. Here, an approximate treatment based on the random walk behaviour of single motors gives good quantitative agreement with simulation results for the tau-dependence of the motor current. Finally, we discuss the possible physiological implications of our results.



rate research

Read More

245 - M. Ebbinghaus , L. Santen 2009
We introduce a stochastic lattice gas model including two particle species and two parallel lanes. One lane with exclusion interaction and directed motion and the other lane without exclusion and unbiased diffusion, mimicking a micotubule filament and the surrounding solution. For a high binding affinity to the filament, jam-like situations dominate the systems behaviour. The fundamental process of position exchange of two particles is approximated. In the case of a many-particle system, we were able to identify a regime in which the system is rather homogenous presenting only small accumulations of particles and a regime in which an important fraction of all particles accumulates in the same cluster. Numerical data proposes that this cluster formation will occur at all densities for large system sizes. Coupling of several filaments leads to an enhanced cluster formation compared to the uncoupled system, suggesting that efficient bidirectional transport on one-dimensional filaments relies on long-ranged interactions and track formation.
In cells and in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow chamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerised tubulin heterodimers). We present analytical results for the density profiles of bound motors, the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir.
215 - D. A. Quint , J. M. Schwarz 2010
Actin cytoskeletal protrusions in crawling cells, or lamellipodia, exhibit various morphological properties such as two characteristic peaks in the distribution of filament orientation with respect to the leading edge. To understand these properties, using the dendritic nucleation model as a basis for cytoskeletal restructuring, a kinetic-population model with orientational-dependent branching (birth) and capping (death) is constructed and analyzed. Optimizing for growth yields a relation between the branch angle and filament orientation that explains the two characteristic peaks. The model also exhibits a subdominant population that allows for more accurate modeling of recent measurements of filamentous actin density along the leading edge of lamellipodia in keratocytes. Finally, we explore the relationship between orientational and spatial organization of filamentous actin in lamellipodia and address recent observations of a prevalence of overlapping filaments to branched filaments---a finding that is claimed to be in contradiction with the dendritic nucleation model.
Intracellular transport of organelles is fundamental to cell function and health. The mounting evidence suggests that this transport is in fact anomalous. However, the reasons for the anomaly is still under debate. We examined experimental trajectories of organelles inside a living cell and propose a mathematical model that describes the previously reported transition from sub-diffusive to super-diffusive motion. In order to explain super-diffusive behaviour at long times, we introduce non-Markovian detachment kinetics of the cargo: the rate of detachment is inversely proportional to the time since the last attachment. Recently, we observed the non-Markovian detachment rate experimentally in eukaryotic cells. Here we further discuss different scenarios of how this effective non-Markovian detachment rate could arise. The non-Markovian model is successful in simultaneously describing the time-averaged variance (the time-averaged mean squared displacement corrected for directed motion), the mean first passage time of trajectories and the multiple peaks observed in the distributions of cargo velocities. We argue that non-Markovian kinetics could be biologically beneficial compared to the Markovian kinetics commonly used for modelling, by increasing the average distance the cargoes travel when a microtubule is blocked by other filaments. In turn, sub-diffusion allows cargoes to reach neighbouring filaments with higher probability, which promotes active motion along the microtubules.
In cells, cytoskeletal filament networks are responsible for cell movement, growth, and division. Filaments in the cytoskeleton are driven and organized by crosslinking molecular motors. In reconstituted cytoskeletal systems, motor activity is responsible for far-from-equilibrium phenomena such as active stress, self-organized flow, and spontaneous nematic defect generation. How microscopic interactions between motors and filaments lead to larger-scale dynamics remains incompletely understood. To build from motor-filament interactions to predict bulk behavior of cytoskeletal systems, more computationally efficient techniques for modeling motor-filament interactions are needed. Here we derive a coarse-graining hierarchy of explicit and continuum models for crosslinking motors that bind to and walk on filament pairs. We compare the steady-state motor distribution and motor-induced filament motion for the different models and analyze their computational cost. All three models agree well in the limit of fast motor binding kinetics. Evolving a truncated moment expansion of motor density speeds the computation by $10^3$--$10^6$ compared to the explicit or continuous-density simulations, suggesting an approach for more efficient simulation of large networks. These tools facilitate further study of motor-filament networks on micrometer to millimeter length scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا