Do you want to publish a course? Click here

Optimal time and space regularity for solutions of degenerate differential equations

107   0   0.0 ( 0 )
 Added by Alberto Favaron
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.



rate research

Read More

In this paper we prove regularity results for a class of nonlinear degenerate elliptic equations of the form $displaystyle -operatorname{div}(A(| abla u|) abla u)+Bleft( | abla u|right) =f(u)$; in particular, we investigate the second order regularity of the solutions. As a consequence of these results, we obtain symmetry and monotonicity properties of positive solutions for this class of degenerate problems in convex symmetric domains via a suitable adaption of the celebrated moving plane method of Alexandrov-Serrin.
In this paper we study regularity of partial differential equations with polynomial coefficients in non isotropic Beurling spaces of ultradifferentiable functions of global type. We study the action of transformations of Gabor and Wigner type in such spaces and we prove that a suitable representation of Wigner type allows to prove regularity for classes of operators that do not have classical hypoellipticity properties.
85 - Cong Wang , Yu Gao , Xiaoping Xue 2021
Based on some elementary estimates for the space-time derivatives of the heat kernel, we use a bootstrapping approach to establish the optimal decay rates for the $L^q(mathbb{R}^d)$ ($1leq qleqinfty$, $dinmathbb{N}$) norm of the space-time derivatives of solutions to the (modified) Patlak-Keller-Segel equations with initial data in $L^1(mathbb{R}^d)$, which implies the joint space-time analyticity of solutions. When the $L^1(mathbb{R}^d)$ norm of the initial datum is small, the upper bound for the decay estimates is global in time, which yields a lower bound on the growth rate of the radius of space-time analyticity in time. As a byproduct, the space analyticity is obtained for any initial data in $L^1(mathbb{R}^d)$. The decay estimates and space-time analyticity are also established for solutions bounded in both space and time variables. The results can be extended to a more general class of equations, including the Navier-Stokes equations.
181 - Hongjie Dong , Tuoc Phan 2018
In this paper, we study parabolic equations in divergence form with coefficients that are singular degenerate as some Muckenhoupt weight functions in one spatial variable. Under certain conditions, weighted reverse H{o}lders inequalities are established. Lipschitz estimates for weak solutions are proved for homogeneous equations with singular degenerate coefficients depending only on one spatial variable. These estimates are then used to establish interior, boundary, and global weighted estimates of Calder{o}n-Zygmund type for weak solutions, assuming that the coefficients are partially VMO (vanishing mean oscillations) with respect to the considered weights. The solvability in weighted Sobolev spaces is also achieved. Our results are new even for elliptic equations, and non-trivially extend known results for uniformly elliptic and parabolic equations. The results are also useful in the study of fractional elliptic and parabolic equations with measurable coefficients.
138 - L. Lorenzi 2009
We consider a class of nonautonomous elliptic operators ${mathscr A}$ with unbounded coefficients defined in $[0,T]timesR^N$ and we prove optimal Schauder estimates for the solution to the parabolic Cauchy problem $D_tu={mathscr A}u+f$, $u(0,cdot)=g$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا