Do you want to publish a course? Click here

Regularity and symmetry results for nonlinear degenerate elliptic equations

166   0   0.0 ( 0 )
 Added by Francesco Esposito
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we prove regularity results for a class of nonlinear degenerate elliptic equations of the form $displaystyle -operatorname{div}(A(| abla u|) abla u)+Bleft( | abla u|right) =f(u)$; in particular, we investigate the second order regularity of the solutions. As a consequence of these results, we obtain symmetry and monotonicity properties of positive solutions for this class of degenerate problems in convex symmetric domains via a suitable adaption of the celebrated moving plane method of Alexandrov-Serrin.



rate research

Read More

81 - Louis Dupaigne 2021
In the present paper, we investigate the regularity and symmetry properties of weak solutions to semilinear elliptic equations which are locally stable.
We investigate partial symmetry of solutions to semi-linear and quasi-linear elliptic problems with convex nonlinearities, in domains that are either axially symmetric or radially symmetric.
147 - Luan Hoang 2015
This paper is focused on the local interior $W^{1,infty}$-regularity for weak solutions of degenerate elliptic equations of the form $text{div}[mathbf{a}(x,u, abla u)] +b(x, u, abla u) =0$, which include those of $p$-Laplacian type. We derive an explicit estimate of the local $L^infty$-norm for the solutions gradient in terms of its local $L^p$-norm. Specifically, we prove begin{equation*} | abla u|_{L^infty(B_{frac{R}{2}}(x_0))}^p leq frac{C}{|B_R(x_0)|}int_{B_R(x_0)}| abla u(x)|^p dx. end{equation*} This estimate paves the way for our forthcoming work in establishing $W^{1,q}$-estimates (for $q>p$) for weak solutions to a much larger class of quasilinear elliptic equations.
We consider Dirichlet problems for linear elliptic equations of second order in divergence form on a bounded or exterior smooth domain $Omega$ in $mathbb{R}^n$, $n ge 3$, with drifts $mathbf{b}$ in the critical weak $L^n$-space $L^{n,infty}(Omega ; mathbb{R}^n )$. First, assuming that the drift $mathbf{b}$ has nonnegative weak divergence in $L^{n/2, infty }(Omega )$, we establish existence and uniqueness of weak solutions in $W^{1,p}(Omega )$ or $D^{1,p}(Omega )$ for any $p$ with $n = n/(n-1)< p < n$. By duality, a similar result also holds for the dual problem. Next, we prove $W^{1,n+varepsilon}$ or $W^{2, n/2+delta}$-regularity of weak solutions of the dual problem for some $varepsilon, delta >0$ when the domain $Omega$ is bounded. By duality, these results enable us to obtain a quite general uniqueness result as well as an existence result for weak solutions belonging to $bigcap_{p< n }W^{1,p}(Omega )$. Finally, we prove a uniqueness result for exterior problems, which implies in particular that (very weak) solutions are unique in both $L^{n/(n-2),infty}(Omega )$ and $L^{n,infty}(Omega )$.
181 - Hongjie Dong , Tuoc Phan 2018
In this paper, we study parabolic equations in divergence form with coefficients that are singular degenerate as some Muckenhoupt weight functions in one spatial variable. Under certain conditions, weighted reverse H{o}lders inequalities are established. Lipschitz estimates for weak solutions are proved for homogeneous equations with singular degenerate coefficients depending only on one spatial variable. These estimates are then used to establish interior, boundary, and global weighted estimates of Calder{o}n-Zygmund type for weak solutions, assuming that the coefficients are partially VMO (vanishing mean oscillations) with respect to the considered weights. The solvability in weighted Sobolev spaces is also achieved. Our results are new even for elliptic equations, and non-trivially extend known results for uniformly elliptic and parabolic equations. The results are also useful in the study of fractional elliptic and parabolic equations with measurable coefficients.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا