No Arabic abstract
We propose a simple Monte Carlo method to calculate the interfacial free energy between the substrate and the material. Using this method we investigate the interfacial free energys of the hard sphere fluid and solid phases near a smooth hard wall. According to the obtained interfacial free energys of the coexisting fluid and solid phases and the Young equation we are able to determine the contact angle with high accuracy, cos$theta$ = 1:010(31), which indicates that a smooth hard wall can be wetted completely by the hard sphere crystal at the interface between the wall and the hard sphere fluid.
We present a comprehensive study of the slip and flow of concentrated colloidal suspensions using cone-plate rheometry and simultaneous confocal imaging. In the colloidal glass regime, for smooth, non-stick walls, the solid nature of the suspension causes a transition in the rheology from Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip behavior at low stress, which is suppressed for sufficient colloid-wall attraction or colloid-scale wall roughness. Visualization shows how the slip-shear transition depends on gap size and the boundary conditions at both walls and that partial slip persist well above the yield stress. A phenomenological model, incorporating the Bingham slip law and HB bulk flow, fully accounts for the behavior. Microscopically, the Bingham law is related to a thin (sub-colloidal) lubrication layer at the wall, giving rise to a characteristic dependence of slip parameters on particle size and concentration. We relate this to the suspensions osmotic pressure and yield stress and also analyze the influence of van der Waals interaction. For the largest concentrations, we observe non-uniform flow around the yield stress, in line with recent work on bulk shear-banding of concentrated pastes. We also describe residual slip in concentrated liquid suspensions, where the vanishing yield stress causes coexistence of (weak) slip and bulk shear flow for all measured rates.
The solid-solid coexistence of a polydisperse hard sphere system is studied by using the Monte Carlo simulation. The results show that for large enough polydispersity the solid-solid coexistence state is more stable than the single-phase solid. The two coexisting solids have different composition distributions but the same crystal structure. Moreover, there is evidence that the solid-solid transition terminates in a critical point as in the case of the fluid-fluid transition.
The complex behavior of confined fluids arising due to a competition between layering and local packing can be disentangled by considering quasi-confined liquids, where periodic boundary conditions along the confining direction restore translational invariance. This system provides a means to investigate the interplay of the relevant length scales of the confinement and the local order. We provide a mode-coupling theory of the glass transition (MCT) for quasi-confined liquids and elaborate an efficient method for the numerical implementation. The nonergodicity parameters in MCT are compared to computer-simulation results for a hard-sphere fluid. We evaluate the nonequilibrium-state diagram and investigate the collective intermediate scattering function. For both methods, nonmonotonic behavior depending on the confinement length is observed.
We report results of dynamic light scattering measurements of the coherent intermediate scattering function (ISF) of glasses of hard spheres for several volume fractions and a range of scattering vectors around the primary maximum of the static structure factor. The ISF shows a clear crossover from an initial fast decay to a slower non-stationary decay. Ageing is quantified in several different ways. However, regardless of the method chosen, the perfect aged glass is approached in a power-law fashion. In particular, the coupling between the fast and slow decays, as measured by the degree of stretching of the ISF at the crossover, also decreases algebraically with waiting time. The non-stationarity of this coupling implies that even the fastest detectable processes are themselves non-stationary.
There is growing evidence that the flow of driven amorphous solids is not homogeneous, even if the macroscopic stress is constant across the system. Via event driven molecular dynamics simulations of a hard sphere glass, we provide the first direct evidence for a correlation between the fluctuations of the local volume-fraction and the fluctuations of the local shear rate. Higher shear rates do preferentially occur at regions of lower density and vice versa. The temporal behavior of fluctuations is governed by a characteristic time scale, which, when measured in units of strain, is independent of shear rate in the investigated range. Interestingly, the correlation volume is also roughly constant for the same range of shear rates. A possible connection between these two observations is discussed.