We study the rotational and vibrational heating of diatomic molecules placed near a surface at finite temperature on the basis of macroscopic quantum electrodynamics. The internal molecular evolution is governed by transition rates that depend on both temperature and position. Analytical and numerical methods are used to investigate the heating of several relevant molecules near various surfaces. We determine the critical distances at which the surface itself becomes the dominant source of heating and we investigate the transition between the long-range and short-range behaviour of the heating rates. A simple formula is presented that can be used to estimate the surface-induced heating rates of other molecules of interest. We also consider how the heating depends on the thickness and composition of the surface.
Stark deceleration has been utilized for slowing and trapping several species of neutral, ground-state polar molecules generated in a supersonic beam expansion. Due to the finite physical dimension of the electrode array and practical limitations of the applicable electric fields, only molecules within a specific range of velocities and positions can be efficiently slowed and trapped. These constraints result in a restricted phase space acceptance of the decelerator in directions both transverse and parallel to the molecular beam axis; hence, careful modeling is required for understanding and achieving efficient Stark decelerator operation. We present work on slowing of the hydroxyl radical (OH) elucidating the physics controlling the evolution of the molecular phase space packets both with experimental results and model calculations. From these results we deduce experimental conditions necessary for efficient operation of a Stark decelerator.
We present an opto-electrical cooling scheme for polar molecules based on a Sisyphus-type cooling cycle in suitably tailored electric trapping fields. Dissipation is provided by spontaneous vibrational decay in a closed level scheme found in symmetric-top rotors comprising six low-field-seeking rovibrational states. A generic trap design is presented. Suitable molecules are identified with vibrational decay rates on the order of 100Hz. A simulation of the cooling process shows that the molecular temperature can be reduced from 1K to 1mK in approximately 10s. The molecules remain electrically trapped during this time, indicating that the ultracold regime can be reached in an experimentally feasible scheme.
We discuss how the internal structure of ultracold molecules, trapped in the motional ground state of optical tweezers, can be used to implement qudits. We explore the rotational, fine and hyperfine structure of $^{40}$Ca$^{19}$F and $^{87}$Rb$^{133}$Cs, which are examples of molecules with $^2Sigma$ and $^1Sigma$ electronic ground states, respectively. In each case we identify a subset of levels within a single rotational manifold suitable to implement a 4-level qudit. Quantum gates can be implemented using two-photon microwave transitions via levels in a neighboring rotational manifold. We discuss limitations to the usefulness of molecular qudits, arising from off-resonant excitation and decoherence. As an example, we present a protocol for using a molecular qudit of dimension $d=4$ to perform the Deutsch algorithm.
A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, would not only enable explorations of a large class of many-body physics phenomena, but could also be used for quantum information processing. We report on the creation of an ultracold dense gas of 40K87Rb polar molecules. Using a single step of STIRAP (STImulated Raman Adiabatic Passage) via two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential. The polar molecular gas has a peak density of 10^12 cm^-3, and an expansion-determined translational temperature of 350 nK. The polar molecules have a permanent electric dipole moment, which we measure via Stark spectroscopy to be 0.052(2) Debye for the triplet rovibrational ground state and 0.566(17) Debye for the singlet rovibrational ground state. (1 Debye= 3.336*10^-30 C m)
This paper reviews the recent results in high-resolution spectroscopy on cold molecules. Laser spectroscopy of cold molecules addresses issues of symmetry violation, like in the search for the electric dipole moment of the electron and the studies on energy differences in enantiomers of chiral species; tries to improve the precision to which fundamental physical constants are known and tests for their possible variation in time and space; tests quantum electrodynamics, and searches for a fifth force. Further, we briefly review the recent technological progresses in the fields of cold molecules and mid-infrared lasers, which are the tools that mainly set the limits for the resolution that is currently attainable in the measurements.