Do you want to publish a course? Click here

Confidence Sets Based on Penalized Maximum Likelihood Estimators in Gaussian Regression

278   0   0.0 ( 0 )
 Added by Ulrike Schneider
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

Confidence intervals based on penalized maximum likelihood estimators such as the LASSO, adaptive LASSO, and hard-thresholding are analyzed. In the known-variance case, the finite-sample coverage properties of such intervals are determined and it is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the hard-thresholding estimator is larger than the length of the shortest interval based on the adaptive LASSO, which is larger than the length of the shortest interval based on the LASSO, which in turn is larger than the standard interval based on the maximum likelihood estimator. In the case where the penalized estimators are tuned to possess the `sparsity property, the intervals based on these estimators are larger than the standard interval by an order of magnitude. Furthermore, a simple asymptotic confidence interval construction in the `sparse case, that also applies to the smoothly clipped absolute deviation estimator, is discussed. The results for the known-variance case are shown to carry over to the unknown-variance case in an appropriate asymptotic sense.



rate research

Read More

Recently, Kabaila and Wijethunga assessed the performance of a confidence interval centred on a bootstrap smoothed estimator, with width proportional to an estimator of Efrons delta method approximation to the standard deviation of this estimator. They used a testbed situation consisting of two nested linear regression models, with error variance assumed known, and model selection using a preliminary hypothesis test. This assessment was in terms of coverage and scaled expected length, where the scaling is with respect to the expected length of the usual confidence interval with the same minimum coverage probability. They found that this confidence interval has scaled expected length that (a) has a maximum value that may be much greater than 1 and (b) is greater than a number slightly less than 1 when the simpler model is correct. We therefore ask the following question. For a confidence interval, centred on the bootstrap smoothed estimator, does there exist a formula for its data-based width such that, in this testbed situation, it has the desired minimum coverage and scaled expected length that (a) has a maximum value that is not too much larger than 1 and (b) is substantially less than 1 when the simpler model is correct? Using a recent decision-theoretic performance bound due to Kabaila and Kong, it is shown that the answer to this question is `no for a wide range of scenarios.
We consider the problem of identifying parameters of a particular class of Markov chains, called Bernoulli Autoregressive (BAR) processes. The structure of any BAR model is encoded by a directed graph. Incoming edges to a node in the graph indicate that the state of the node at a particular time instant is influenced by the states of the corresponding parental nodes in the previous time instant. The associated edge weights determine the corresponding level of influence from each parental node. In the simplest setup, the Bernoulli parameter of a particular nodes state variable is a convex combination of the parental node states in the previous time instant and an additional Bernoulli noise random variable. This paper focuses on the problem of edge weight identification using Maximum Likelihood (ML) estimation and proves that the ML estimator is strongly consistent for two variants of the BAR model. We additionally derive closed-form estimators for the aforementioned two variants and prove their strong consistency.
From an optimizers perspective, achieving the global optimum for a general nonconvex problem is often provably NP-hard using the classical worst-case analysis. In the case of Coxs proportional hazards model, by taking its statistical model structures into account, we identify local strong convexity near the global optimum, motivated by which we propose to use two convex programs to optimize the folded-concave penalized Coxs proportional hazards regression. Theoretically, we investigate the statistical and computational tradeoffs of the proposed algorithm and establish the strong oracle property of the resulting estimators. Numerical studies and real data analysis lend further support to our algorithm and theory.
In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive point estimation, the construction of adaptive confidence regions is severely limited (cf. Li, 1989). The present paper sheds new light on this gap. We develop exact and adaptive confidence sets for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral chi-squared distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.
167 - Chunlin Wang 2008
In this paper, we study the asymptotic normality of the conditional maximum likelihood (ML) estimators for the truncated regression model and the Tobit model. We show that under the general setting assumed in his book, the conjectures made by Hayashi (2000) footnote{see page 516, and page 520 of Hayashi (2000).} about the asymptotic normality of the conditional ML estimators for both models are true, namely, a sufficient condition is the nonsingularity of $mathbf{x_tx_t}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا