Do you want to publish a course? Click here

Wireless Sensor/Actuator Network Design for Mobile Control Applications

198   0   0.0 ( 0 )
 Added by Feng Xia
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

Wireless sensor/actuator networks (WSANs) are emerging as a new generation of sensor networks. Serving as the backbone of control applications, WSANs will enable an unprecedented degree of distributed and mobile control. However, the unreliability of wireless communications and the real-time requirements of control applications raise great challenges for WSAN design. With emphasis on the reliability issue, this paper presents an application-level design methodology for WSANs in mobile control applications. The solution is generic in that it is independent of the underlying platforms, environment, control system models, and controller design. To capture the link quality characteristics in terms of packet loss rate, experiments are conducted on a real WSAN system. From the experimental observations, a simple yet efficient method is proposed to deal with unpredictable packet loss on actuator nodes. Trace-based simulations give promising results, which demonstrate the effectiveness of the proposed approach.



rate research

Read More

Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support.
Congestion control and avoidance in Wireless Sensor Networks (WSNs) is a subject that has attracted a lot of research attention in the last decade. Besides rate and resource control, the utilization of mobile nodes has also been suggested as a way to control congestion. In this work, we present a Mobile Congestion Control (MobileCC) algorithm with two variations, to assist existing congestion control algorithms in facing congestion in WSNs. The first variation employs mobile nodes that create locally-significant alternative paths leading to the sink. The second variation employs mobile nodes that create completely individual (disjoint) paths to the sink. Simulation results show that both variations can significantly contribute to the alleviation of congestion in WSNs.
261 - Moufida Maimour 2008
Wireless sensor networks hold a great potential in the deployment of several applications of a paramount importance in our daily life. Video sensors are able to improve a number of these applications where new approaches adapted to both wireless sensor networks and video transport specific characteristics are required. The aim of this work is to provide the necessary bandwidth and to alleviate the congestion problem to video streaming. In this paper, we investigate various load repartition strategies for congestion control mechanism on top of a multipath routing feature. Simulations are performed in order to get insight into the performances of our proposals.
147 - Feng Xia , Wenhong Zhao 2008
Wireless control systems (WCSs) often have to operate in dynamic environments where the network traffic load may vary unpredictably over time. The sampling in sensors is conventionally time triggered with fixed periods. In this context, only worse-than-possible quality of control (QoC) can be achieved when the network is underloaded, while overloaded conditions may significantly degrade the QoC, even causing system instability. This is particularly true when the bandwidth of the wireless network is limited and shared by multiple control loops. To address these problems, a flexible time-triggered sampling scheme is presented in this work. Smart sensors are used to facilitate dynamic adjustment of sampling periods, which enhances the flexibility and resource efficiency of the system based on time-triggered sampling. Feedback control technology is exploited for adapting sampling periods in a periodic manner. The deadline miss ratio in each control loop is maintained at/around a desired level, regardless of workload variations. Simulation results show that the proposed sampling scheme is able to deal with dynamic and unpredictable variations in network traffic load. Compared to conventional time-triggered sampling, it leads to much better QoC in WCSs operating in dynamic environments.
In past years there has been increasing interest in field of Wireless Sensor Networks (WSNs). One of the major issue of WSNs is development of energy efficient routing protocols. Clustering is an effective way to increase energy efficiency. Mostly, heterogenous protocols consider two or three energy level of nodes. In reality, heterogonous WSNs contain large range of energy levels. By analyzing communication energy consumption of the clusters and large range of energy levels in heterogenous WSN, we propose BEENISH (Balanced Energy Efficient Network Integrated Super Heterogenous) Protocol. It assumes WSN containing four energy levels of nodes. Here, Cluster Heads (CHs) are elected on the bases of residual energy level of nodes. Simulation results show that it performs better than existing clustering protocols in heterogeneous WSNs. Our protocol achieve longer stability, lifetime and more effective messages than Distributed Energy Efficient Clustering (DEEC), Developed DEEC (DDEEC) and Enhanced DEEC (EDEEC).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا