No Arabic abstract
In past years there has been increasing interest in field of Wireless Sensor Networks (WSNs). One of the major issue of WSNs is development of energy efficient routing protocols. Clustering is an effective way to increase energy efficiency. Mostly, heterogenous protocols consider two or three energy level of nodes. In reality, heterogonous WSNs contain large range of energy levels. By analyzing communication energy consumption of the clusters and large range of energy levels in heterogenous WSN, we propose BEENISH (Balanced Energy Efficient Network Integrated Super Heterogenous) Protocol. It assumes WSN containing four energy levels of nodes. Here, Cluster Heads (CHs) are elected on the bases of residual energy level of nodes. Simulation results show that it performs better than existing clustering protocols in heterogeneous WSNs. Our protocol achieve longer stability, lifetime and more effective messages than Distributed Energy Efficient Clustering (DEEC), Developed DEEC (DDEEC) and Enhanced DEEC (EDEEC).
Wireless Sensor Networks (WSNs) consist of large number of randomly deployed energy constrained sensor nodes. Sensor nodes have ability to sense and send sensed data to Base Station (BS). Sensing as well as transmitting data towards BS require high energy. In WSNs, saving energy and extending network lifetime are great challenges. Clustering is a key technique used to optimize energy consumption in WSNs. In this paper, we propose a novel clustering based routing technique: Enhanced Developed Distributed Energy Efficient Clustering scheme (EDDEEC) for heterogeneous WSNs. Our technique is based on changing dynamically and with more efficiency the Cluster Head (CH) election probability. Simulation results show that our proposed protocol achieves longer lifetime, stability period and more effective messages to BS than Distributed Energy Efficient Clustering (DEEC), Developed DEEC (DDEEC) and Enhanced DEEC (EDEEC) in heterogeneous environments.
One of the limitations of wireless sensor nodes is their inherent limited energy resource. Besides maximizing the lifetime of the sensor node, it is preferable to distribute the energy dissipated throughout the wireless sensor network in order to minimize maintenance and maximize overall system performance. Any communication protocol that involves synchronization of peer nodes incurs some overhead for setting up the communication. We introduce a new algorithm, e3D (energy-efficient Distributed Dynamic Diffusion routing algorithm), and compare it to two other algorithms, namely directed, and random clustering communication. We take into account the setup costs and analyze the energy-efficiency and the useful lifetime of the system. In order to better understand the characteristics of each algorithm and how well e3D really performs, we also compare e3D with its optimum counterpart and an optimum clustering algorithm. The benefit of introducing these ideal algorithms is to show the upper bound on performance at the cost of an astronomical prohibitive synchronization costs. We compare the algorithms in terms of system lifetime, power dissipation distribution, cost of synchronization, and simplicity of the algorithm. Our simulation results show that e3D performs comparable to its optimal counterpart while having significantly less overhead.
In sensor networks communication by broadcast methods involves many hazards, especially collision. Several MAC layer protocols have been proposed to resolve the problem of collision namely ARBP, where the best achieved success rate is 90%. We hereby propose a MAC protocol which achieves a greater success rate (Success rate is defined as the percentage of delivered packets at the source reaching the destination successfully) by reducing the number of collisions, but by trading off the average propagation delay of transmission. Our proposed protocols are also shown to be more energy efficient in terms of energy dissipation per message delivery, compared to the currently existing protocol.
Increased use of Wireless sensor Networks (WSNs) in variety of applications has enabled the designers to create autonomous sensors, which can be deployed randomly, without human supervision, for the purpose of sensing and communicating valuable data. Many energy-efficient routing protocols are designed for WSNs based on clustering structure. In this paper, we have proposed iMODLEACH protocol which is an extension to the MODLEACH protocol. Simulation results indicate that iMODLEACH outperforms MODLEACH in terms of network life-time and packets transferred to base station. The mathematical analysis helps to select such values of these parameters which can suit a particular wireless sensor network application.
Recently, utilizing renewable energy for wireless system has attracted extensive attention. However, due to the instable energy supply and the limited battery capacity, renewable energy cannot guarantee to provide the perpetual operation for wireless sensor networks (WSN). The coexistence of renewable energy and electricity grid is expected as a promising energy supply manner to remain function for a potentially infinite lifetime. In this paper, we propose a new system model suitable for WSN, taking into account multiple energy consumptions due to sensing, transmission and reception, heterogeneous energy supplies from renewable energy, electricity grid and mixed energy, and multidimension stochastic natures due to energy harvesting profile, electricity price and channel condition. A discrete-time stochastic cross-layer optimization problem is formulated to achieve the optimal trade-off between the time-average rate utility and electricity cost subject to the data and energy queuing stability constraints. The Lyapunov drift-plus-penalty with perturbation technique and block coordinate descent method is applied to obtain a fully distributed and low-complexity cross-layer algorithm only requiring knowledge of the instantaneous system state. The explicit trade-off between the optimization objective and queue backlog is theoretically proven. Finally, the extensive simulations verify the theoretic claims.