Do you want to publish a course? Click here

Local Aronson-Benilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds

125   0   0.0 ( 0 )
 Added by Peng Lu
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In this work we derive local gradient and Laplacian estimates of the Aronson-Benilan and Li-Yau type for positive solutions of porous medium equations posed on Riemannian manifolds with a lower Ricci curvature bound. We also prove similar results for some fast diffusion equations. Inspired by Perelmans work we discover some new entropy formulae for these equations.



rate research

Read More

We derive estimates relating the values of a solution at any two points to the distance between the points, for quasilinear isotropic elliptic equations on compact Riemannian manifolds, depending only on dimension and a lower bound for the Ricci curvature. These estimates imply sharp gradient bounds relating the gradient of an arbitrary solution at given height to that of a symmetric solution on a warped product model space. We also discuss the problem on Finsler manifolds with nonnegative weighted Ricci curvature, and on complete manifolds with bounded geometry, including solutions on manifolds with boundary with Dirichlet boundary condition. Particular cases of our results include gradient estimates of Modica type.
376 - Paul W.Y. Lee 2013
We prove a version of differential Harnack inequality for a family of sub-elliptic diffusions on Sasakian manifolds under certain curvature conditions.
A new proof for stability estimates for the complex Monge-Amp`ere and Hessian equations is given, which does not require pluripotential theory. A major advantage is that the resulting stability estimates are then uniform under general degenerations of the background metric in the case of the Monge-Amp`ere equation, and under degenerations to a big class in the case of Hessian equations.
141 - Li Chen 2021
In this paper, we consider Hessian equations with its structure as a combination of elementary symmetric functions on closed Kahler manifolds. We provide a sufficient and necessary condition for the solvability of these equations, which generalize the results of Hessian equations and Hessian quotient equations.
94 - Rirong Yuan 2021
In this article we study a class of prescribed curvature problems on complete noncompact Riemannian manifolds. To be precise, we derive local $C^0$-estimate under an asymptotic condition which is in effect optimal, and prove the existence of complete conformal metrics with prescribed curvature functions. A key ingredient of our strategy is Aviles-McOwens result or its fully nonlinear version on the existence of complete conformal metrics with prescribed curvature functions on manifolds with boundary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا