Do you want to publish a course? Click here

On the KP I transonic limit of two-dimensional Gross-Pitaevskii travelling waves

429   0   0.0 ( 0 )
 Added by Philippe Gravejat
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We provide a rigorous mathematical derivation of the convergence in the long-wave transonic limit of the minimizing travelling waves for the two-dimensional Gross-Pitaevskii equation towards ground states for the Kadomtsev-Petviashvili equation (KP I).



rate research

Read More

179 - Fabrice Bethuel 2008
The purpose of this paper is to provide a rigorous mathematical proof of the existence of travelling wave solutions to the Gross-Pitaevskii equation in dimensions two and three. Our arguments, based on minimization under constraints, yield a full branch of solutions, and extend earlier results, where only a part of the branch was built. In dimension three, we also show that there are no travelling wave solutions of small energy.
We consider the 3D Gross-Pitaevskii equation begin{equation} onumber ipartial_t psi +Delta psi+(1-|psi|^2)psi=0 text{ for } psi:mathbb{R}times mathbb{R}^3 rightarrow mathbb{C} end{equation} and construct traveling waves solutions to this equation. These are solutions of the form $psi(t,x)=u(x_1,x_2,x_3-Ct)$ with a velocity $C$ of order $varepsilon|logvarepsilon|$ for a small parameter $varepsilon>0$. We build two different types of solutions. For the first type, the functions $u$ have a zero-set (vortex set) close to an union of $n$ helices for $ngeq 2$ and near these helices $u$ has degree 1. For the second type, the functions $u$ have a vortex filament of degree $-1$ near the vertical axis $e_3$ and $ngeq 4$ vortex filaments of degree $+1$ near helices whose axis is $e_3$. In both cases the helices are at a distance of order $1/(varepsilonsqrt{|log varepsilon|)}$ from the axis and are solutions to the Klein-Majda-Damodaran system, supposed to describe the evolution of nearly parallel vortex filaments in ideal fluids. Analogous solutions have been constructed recently by the authors for the stationary Gross-Pitaevskii equation, namely the Ginzburg-Landau equation. To prove the existence of these solutions we use the Lyapunov-Schmidt method and a subtle separation between even and odd Fourier modes of the error of a suitable approximation.
150 - Fabrice Bethuel 2009
The fact that the Korteweg-de-Vries equation offers a good approximation of long-wave solutions of small amplitude to the one-dimensional Gross-Pitaevskii equation was derived several years ago in the physical literature. In this paper, we provide a rigorous proof of this fact, and compute a precise estimate for the error term. Our proof relies on the integrability of both the equations. In particular, we give a relation between the invariants of the two equations, which, we hope, is of independent interest.
In this paper we study the existence of finite energy traveling waves for the Gross-Pitaevskii equation. This problem has deserved a lot of attention in the literature, but the existence of solutions in the whole subsonic range was a standing open problem till the work of Maris in 2013. However, such result is valid only in dimension 3 and higher. In this paper we first prove the existence of finite energy traveling waves for almost every value of the speed in the subsonic range. Our argument works identically well in dimensions 2 and 3. With this result in hand, a compactness argument could fill the range of admissible speeds. We are able to do so in dimension 3, recovering the aforementioned result by Maris. The planar case turns out to be more difficult and the compactness argument works only under an additional assumption on the vortex set of the approximating solutions.
The Gross-Pitaevskii equation is a widely used model in physics, in particular in the context of Bose-Einstein condensates. However, it only takes into account local interactions between particles. This paper demonstrates the validity of using a nonlocal formulation as a generalization of the local model. In particular, the paper demonstrates that the solution of the nonlocal model approaches in norm the solution of the local model as the nonlocal model approaches the local model. The nonlocality and potential used for the Gross-Pitaevskii equation are quite general, thus this paper shows that one can easily add nonlocal effects to interesting classes of Bose-Einstein condensate models. Based on a particular choice of potential for the nonlocal Gross-Pitaevskii equation, we establish the orbital stability of a class of parameter-dependent solutions to the nonlocal problem for certain parameter regimes. Numerical results corroborate the analytical stability results and lead to predictions about the stability of the class of solutions for parameter values outside of the purview of the theory established in this paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا