Do you want to publish a course? Click here

Coulomb blockade for an oscillating tunnel junction

258   0   0.0 ( 0 )
 Added by Nicolas Pauget
 Publication date 2008
  fields Physics
and research's language is English
 Authors N. Pauget




Ask ChatGPT about the research

We consider a tunnel junction formed between a fixed electrode and an oscillating one. Accumulation of the charge on the junction capacitor induces a force on the nano-mechanical oscillator. The junction is voltage biased and connected in series with an impedance $Z(omega)$. We discuss how the picture of Coulomb blockade is modified by the presence of the oscillator. Quantum fluctuations of the mechanical oscillator modify the $I$-$V$ characteristics particularly in the strong Coulomb blockade limit. We show that the oscillator can be taken into account by a simple modification of the effective impedance of the circuit. We discuss in some details the case of a single inductance $Z(omega)=iLomega$ and of a constant resistance $Z(omega)=R$. With little modifications the theory applies also to incoherent transport in Josephson junctions in the tunneling limit.



rate research

Read More

We have numerically studied the behavior of one dimensional tunnel junction arrays when random background charges are included using the ``orthodox theory of single electron tunneling. Random background charge distributions are verified in both amplitude and density. The use of a uniform array as a transistor is discussed both with and without random background charges. An analytic expression for the gain near zero gate voltage in a uniform array with no background charges is derived. The gate modulation with background charges present is simulated.
We investigate a wafer scale tunnel junction fabrication method, where a plasma etched via through a dielectric layer covering bottom Al electrode defines the tunnel junction area. The ex-situ tunnel barrier is formed by oxidation of the bottom electrode in the junction area. Room temperature resistance mapping over a 150 mm wafer give local deviation values of the tunnel junction resistance that fall below 7.5 % with an average of 1.3 %. The deviation is further investigated by sub-1 K measurements of a device, which has one tunnel junction connected to four arrays consisting of N junctions (N = 41, junction diameter 700 nm). The differential conductance is measured in single-junction and array Coulomb blockade thermometer operation modes. By fitting the experimental data to the theoretical models we found an upper limit for the local tunnel junction resistance deviation of ~5 % for the array of 2N+1 junctions. This value is of the same order as the minimum detectable deviation defined by the accuracy of our experimental setup.
259 - Bo Song 2007
Quantum transport through single molecules is very sensitive to the strength of the molecule-electrode contact. When a molecular junction weakly coupled to external electrodes, charging effects do play an important role (Coulomb blockade regime). In this regime, the non-equilibrium Green function is usually substituted with master equation approaches, which prevents the density functional theory from describing Coulomb blockade in non-equilibrium case. Last year, we proposed an Ansatz to combine the non-equilibrium Green function technique with the equation of motion method. With help of it, Coulomb blockade was obtained by non-equilibrium Green function, and completely agrees with the master equation results [Phys. Rev. B textbf{76}, 045408 (2007)]. Here, by the Ansatz, we show a new way to introduce Coulomb blockade correction to DFT calculation in non-equilibrium case. And the characteristics of Coulomb blockade are obtained in the calculation of a $toy$ molecule correctly.
227 - S. Amasha , I. G. Rau , M. Grobis 2010
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures below 50 mK we observe a periodic oscillation in the conductance of the dot with gate voltage that corresponds to a residual quantization of charge. From the temperature and magnetic field dependence, we infer the oscillations are Mesoscopic Coulomb Blockade, a type of Coulomb blockade caused by electron interference in an otherwise open system.
178 - P. Pingue 2004
A tunable directional coupler based on Coulomb Blockade effect is presented. Two electron waveguides are coupled by a quantum dot to an injector waveguide. Electron confinement is obtained by surface Schottky gates on single GaAs/AlGaAs heterojunction. Magneto-electrical measurements down to 350 mK are presented and large transconductance oscillations are reported on both outputs up to 4.2 K. Experimental results are interpreted in terms of Coulomb Blockade effect and the relevance of the present design strategy for the implementation of an electronic multiplexer is underlined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا