Do you want to publish a course? Click here

Highly-reduced Fine-structure splitting in InAs/InP quantum dots offering efficient on-demand 1.55 $mu$m entangled photon emitter

158   0   0.0 ( 0 )
 Added by Lixin He
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

To generate entangled photon pairs via quantum dots (QDs), the exciton fine structure splitting (FSS) must be comparable to the exciton homogeneous line width. Yet in the (In,Ga)As/GaAs QD, the intrinsic FSS is about a few tens $mu$eV. To achieve photon entanglement, it is necessary to Cherry-pick a sample with extremely small FSS from a large number of samples, or to apply strong in-plane magnetic field. Using theoretical modeling of the fundamental causes of FSS in QDs, we predict that the intrinsic FSS of InAs/InP QDs is an order of magnitude smaller than that of InAs/GaAs dots, and better yet, their excitonic gap matches the 1.55 $mu$m fiber optic wavelength, therefore offer efficient on-demand entangled photon emitters for long distance quantum communication.



rate research

Read More

Exciton spin and related optical polarization in self-assembled InAs/In$_{0.53}$Ga$_{0.23}$Al$_{0.24}$As/InP(001) quantum dashes emitting at 1.55 {mu}m are investigated by means of polarization- and time-resolved photoluminescence, as well as photoluminescence excitation spectroscopy, at cryogenic temperature. We investigate the influence of highly non-resonant and quasi-resonant optical spin pumping conditions on spin polarization and spin memory of the quantum dash ground state. We show that a spin pumping scheme, utilizing the longitudinal-optical-phonon-mediated coherent scattering process, can lead to the polarization degree above 50%. We discuss the role of intrinsic asymmetries in the quantum dash that influence values of the degree of polarization and its time evolution.
We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their electronic structure differ significantly in certain aspects, especially for holes: (i) The hole levels have a much larger energy spacing in the InAs/InP dots than in the InAs/GaAs dots of corresponding size. (ii) Furthermore, in contrast with the InAs/GaAs dots, where the sizeable hole $p$, $d$ intra-shell level splitting smashes the energy level shell structure, the InAs/InP QDs have a well defined energy level shell structure with small $p$, $d$ level splitting, for holes. (iii) The fundamental exciton energies of the InAs/InP dots are calculated to be around 0.8 eV ($sim$ 1.55 $mu$m), about 200 meV lower than those of typical InAs/GaAs QDs, mainly due to the smaller lattice mismatch in the InAs/InP dots. (iii) The widths of the exciton $P$ shell and $D$ shell are much narrower in the InAs/InP dots than in the InAs/GaAs dots. (iv) The InAs/GaAs and InAs/InP dots have a reversed light polarization anisotropy along the [100] and [1$bar{1}$0] directions.
A systematic study of the impact of annealing on the electronic properties of single InAs/GaAs quantum dots (QDs) is presented. Single QD cathodoluminescence spectra are recorded to trace the evolution of one and the same QD over several steps of annealing. A substantial reduction of the excitonic fine-structure splitting upon annealing is observed. In addition, the binding energies of different excitonic complexes change dramatically. The results are compared to model calculations within eight-band k.p theory and the configuration interaction method, suggesting a change of electron and hole wave function shape and relative position.
InGaAs Quantum Dots embedded in GaAs barriers, grown in inverted tetrahedral recesses of 7 {mu}m edge, have showed interesting characteristics in terms of uniformity and spectral narrowness of the emission. In this paper we present a study on the fine structure splitting (FSS). The investigation of about 40 single quantum dots revealed two main points: (1) the values of this parameter are very similar from dot to dot, proving again the uniformity of Pyramidal QD properties, (2) there is a little chance, in the sample investigated, to find a dot with natural zero splitting, but the values found (the mean being 13 {mu}eV) should always guarantee the capability of restoring the degeneracy with some corrective technique (e.g. application of a small magnetic field).
We derive a general relation between the fine structure splitting (FSS) and the exciton polarization angle of self-assembled quantum dots (QDs) under uniaxial stress. We show that the FSS lower bound under external stress can be predicted by the exciton polarization angle and FSS under zero stress. The critical stress can also be determined by monitoring the change in exciton polarization angle. We confirm the theory by performing atomistic pseudopotential calculations for the InAs/GaAs QDs. The work provides a deep insight into the dots asymmetry and their optical properties, and a useful guide in selecting QDs with smallest FSS which are crucial in entangled photon sources applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا