Do you want to publish a course? Click here

Proposal for geometric generation of a biexciton in a quantum dot using a chirped pulse

413   0   0.0 ( 0 )
 Added by Ren-Bao Liu
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose to create a biexciton by a coherent optical process using a frequency-sweeping (chirped) laser pulse. In contrast to the two-photon Rabi flop scheme, the present method uses the state transfer through avoided level crossing and is a geometric control. The proposed process is robust against pulse area uncertainty, detuning, and dephasing. The speed of the adiabatic operation is constrained by the biexciton binding energy.



rate research

Read More

We consider the problem of pulsed biexciton preparation in a quantum dot and show that a pulse-sequence with a simple on-off-on modulation can achieve complete preparation of the target state faster than the commonly used constant and hyperbolic secant pulses. The durations of the pulses composing the sequence are obtained from the solution of a transcendental equation. Furthermore, using numerical optimal control, we demonstrate that for a wide range of values of the maximum pulse amplitude, the proposed pulse-sequence prepares the biexciton state in the numerically obtained minimum time, for the specific system under consideration. We finally show with numerical simulations that, even in the presence of dissipation and dephasing, high levels of biexciton state fidelity can be generated in short times.
We propose a technique to initialize an electron spin in a semiconductor quantum dot with a single short optical pulse. It relies on the fast depletion of the initial spin state followed by a preferential, Purcell-accelerated desexcitation towards the desired state thanks to a micropillar cavity. We theoretically discuss the limits on initialization rate and fidelity, and derive the pulse area for optimal initialization. We show that spin initialization is possible using a single optical pulse down to a few tens of picoseconds wide.
361 - Timo Kaldewey 2017
Excitation of a semiconductor quantum dot with a chirped laser pulse allows excitons to be created by rapid adiabatic passage. In quantum dots this process can be greatly hindered by the coupling to phonons. Here we add a high chirp rate to ultra-short laser pulses and use these pulses to excite a single quantum dot. We demonstrate that we enter a regime where the exciton-phonon coupling is effective for small pulse areas, while for higher pulse areas a decoupling of the exciton from the phonons occurs. We thus discover a reappearance of rapid adiabatic passage, in analogy to the predicted reappearance of Rabi rotations at high pulse areas. The measured results are in good agreement with theoretical calculations.
We propose and characterize a two-photon emitter in a highly polarised, monochromatic and directional beam, realized by means of a quantum dot embedded in a linearly polarized cavity. In our scheme, the cavity frequency is tuned to half the frequency of the biexciton (two excitons with opposite spins) and largely detuned from the excitons thanks to the large biexciton binding energy. We show how the emission can be Purcell enhanced by several orders of magnitude into the two-photon channel for available experimental systems.
56 - Steven H. Simon 1999
A device is proposed that is similar in spirit to the electron turnstile except that it operates within a quantum Hall fluid. In the integer quantum Hall regime, this device pumps an integer number of electrons per cycle. In the fractional regime, it pumps an integer number of fractionally charged quasiparticles per cycle. It is proposed that such a device can make an accurate measurement of the charge of the quantum Hall effect quasiparticles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا