Do you want to publish a course? Click here

Ground state of low dimensional dipolar gases: linear and zigzag chains

322   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the ground state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches various planar distributions of dipoles. At large linear densities, when the dipolar gas exhibits a crystal-like phase, critical values of the transverse frequency exist below which the configuration exhibits novel transverse patterns. These critical values are found by means of a classical theory, and are in full agreement with classical Monte Carlo simulations. The study of the quantum system is performed numerically with Monte Carlo techniques and shows that the quantum fluctuations smoothen the transition and make it completely disappear in a gas phase. These predictions could be experimentally tested and would allow one to reveal the effect of zero-point motion on self-organized mesoscopic structures of matter waves, such as the transverse pattern of the zigzag chain.



rate research

Read More

143 - P. Pedri 2007
We calculate the excitation modes of a 1D dipolar quantum gas confined in a harmonic trap with frequency $omega_0$ and predict how the frequency of the breathing n=2 mode characterizes the interaction strength evolving from the Tonks-Girardeau value $omega_2=2omega_0$ to the quasi-ordered, super-strongly interacting value $omega_2=sqrt{5}omega_0$. Our predictions are obtained within a hydrodynamic Luttinger-Liquid theory after applying the Local Density Approximation to the equation of state for the homogeneous dipolar gas, which are in turn determined from Reptation Quantum Monte Carlo simulations. They are shown to be in quite accurate agreement with the results of a sum-rule approach. These effects can be observed in current experiments, revealing the Luttinger-liquid nature of 1D dipolar Bose gases.
111 - R. Citro 2006
The ground state and structure of a one-dimensional Bose gas with dipolar repulsions is investigated at zero temperature by a combined Reptation Quantum Monte Carlo (RQMC) and bosonization approach. A non trivial Luttinger-liquid behavior emerges in a wide range of intermediate densities, evolving into a Tonks-Girardeau gas at low density and into a classical quasi-ordered state at high density. The density dependence of the Luttinger exponent is extracted from the numerical data, providing analytical predictions for observable quantities, such as the structure factor and the momentum distribution. We discuss the accessibility of such predictions in current experiments with ultracold atomic and molecular gases.
We present a concise review of the physics of ultra-cold dipolar gases, based mainly on the theoretical developments in our own group. First, we discuss shortly weakly interacting ultra-cold trapped dipolar gases. Dipolar Bose-Einstein condensates exhibit non-standard instabilities and the physics of both Bose and Fermi dipolar gases depends on the trap geometry. We focus then the second part of the paper on strongly correlated dipolar gases and discuss ultra-cold dipolar gases in optical lattices. Such gases exhibit a spectacular richness of quantum phases and metastable states, which may perhaps be used as quantum memories. We comment shortly on the possibility of superchemistry aiming at the creation of dipolar heteronuclear molecules in lattices. Finally, we turn to ultra-cold dipolar gases in artificial magnetic fields, and consider rotating dipolar gases, that provide in our opinion the best option towards the realization of the fractional quantum Hall effect and quantum Wigner crystals.
A string of trapped ions at zero temperature exhibits a structural phase transition to a zigzag structure, tuned by reducing the transverse trap potential or the interparticle distance. The transition is driven by transverse, short wavelength vibrational modes. We argue that this is a quantum phase transition, which can be experimentally realized and probed. Indeed, by means of a mapping to the Ising model in a transverse field, we estimate the quantum critical point in terms of the system parameters, and find a finite, measurable deviation from the critical point predicted by the classical theory. A measurement procedure is suggested which can probe the effects of quantum fluctuations at criticality. These results can be extended to describe the transverse instability of ultracold polar molecules in a one dimensional optical lattice.
The ground-state phase properties of a two-dimensional Bose system with dipole-dipole interactions is studied by means of quantum Monte Carlo techniques. Limitations of mean-field theory in a two-dimensional geometry are discussed. A quantum phase transition from gas to solid is found. Crystal is tested for existence of a supersolid in the vicinity of the phase transition. Existence of mesoscopic analogue of the off-diagonal long-range order is shown in the one-body density matrix in a finite-size crystal. Non-zero superfluid fraction is found in a finite-size crystal, the signal being dramatically increased in presence of vacancies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا