Do you want to publish a course? Click here

Collective excitations of trapped one-dimensional dipolar quantum gases

104   0   0.0 ( 0 )
 Added by Edmond Orignac
 Publication date 2007
  fields Physics
and research's language is English
 Authors P. Pedri




Ask ChatGPT about the research

We calculate the excitation modes of a 1D dipolar quantum gas confined in a harmonic trap with frequency $omega_0$ and predict how the frequency of the breathing n=2 mode characterizes the interaction strength evolving from the Tonks-Girardeau value $omega_2=2omega_0$ to the quasi-ordered, super-strongly interacting value $omega_2=sqrt{5}omega_0$. Our predictions are obtained within a hydrodynamic Luttinger-Liquid theory after applying the Local Density Approximation to the equation of state for the homogeneous dipolar gas, which are in turn determined from Reptation Quantum Monte Carlo simulations. They are shown to be in quite accurate agreement with the results of a sum-rule approach. These effects can be observed in current experiments, revealing the Luttinger-liquid nature of 1D dipolar Bose gases.

rate research

Read More

111 - R. Citro 2006
The ground state and structure of a one-dimensional Bose gas with dipolar repulsions is investigated at zero temperature by a combined Reptation Quantum Monte Carlo (RQMC) and bosonization approach. A non trivial Luttinger-liquid behavior emerges in a wide range of intermediate densities, evolving into a Tonks-Girardeau gas at low density and into a classical quasi-ordered state at high density. The density dependence of the Luttinger exponent is extracted from the numerical data, providing analytical predictions for observable quantities, such as the structure factor and the momentum distribution. We discuss the accessibility of such predictions in current experiments with ultracold atomic and molecular gases.
We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show that the expressions found by the scaling ansatz method are a special case of our solution. Our findings, however, are most useful in case the trap contains more than one phase: we demonstrate how to obtain the oscillation frequencies in case an interface is present between the ideal gas and a different phase.
We present a theoretical study of the collective excitations of a trapped imbalanced fermion gas at unitarity, when the system consists of a superfluid core and a normal outer shell. We formulate the relevant boundary conditions and treat the normal shell both hydrodynamically and collisionlessly. For an isotropic trap, we calculate the mode frequencies as a function of trap polarization. Out-of-phase modes with frequencies below the trapping frequency are obtained for the case of a hydrodynamic normal shell. For the collisionless case, we calculate the monopole mode frequencies, and find that all but the lowest mode may be damped.
In this letter we consider dipolar quantum gases in a quasi-one-dimensional tube with dipole moment perpendicular to the tube direction. We deduce the effective one-dimensional interaction potential and show that this potential is not purely repulsive, but rather has an attractive part due to high-order scattering processes through transverse excited states. The attractive part can induce bound state and cause scattering resonances. This represents the dipole induced resonance in low-dimension. We work out an unconventional behavior of low-energy phase shift for this effective potential and show how it evolves across a resonance. Based on the phase shift, the interaction energy of spinless bosons is obtained using asymptotic Bethe ansatz. Despite of long-range nature of dipolar interaction, we find that a behavior similar as short-range Lieb-Linger gas emerges at the resonance regime.
We investigate bosonic atoms or molecules interacting via dipolar interactions in a planar array of one-dimensional tubes. We consider the situation in which the dipoles are oriented perpendicular to the tubes by an external field. We find various quantum phases reaching from a `sliding Luttinger liquid phase in which the tubes remain Luttinger liquids to a two-dimensional charge density wave ordered phase. Two different kinds of charge density wave order occur: a stripe phase in which the bosons in different tubes are aligned and a checkerboard phase. We further point out how to distinguish the occurring phases experimentally.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا