Do you want to publish a course? Click here

Excitons in the wurtzite AlGaN/GaN quantum-well heterostructures

293   0   0.0 ( 0 )
 Added by J. T. Devreese
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have theoretically studied exciton states and photoluminescence spectra of strained wurtzite AlGaN/GaN quantum-well heterostructures. The electron and hole energy spectra are obtained by numerically solving the Schrodinger equation, both for a single-band Hamiltonian and for a non-symmetrical 6-band Hamiltonian. The deformation potential and spin-orbit interaction are taken into account. For increasing built-in field, generated by the piezoelectric polarization and by the spontaneous polarization, the energy of size quantization rises and the number of size quantized electron and hole levels in a quantum well decreases. The exciton energy spectrum is obtained using electron and hole wave functions and two-dimensional Coulomb wave functions as a basis. We have calculated the exciton oscillator strengths and identified the exciton states active in optical absorption. For different values of the Al content x, a quantitative interpretation, in a good agreement with experiment, is provided for (i) the red shift of the zero-phonon photoluminescence peaks for increasing the quantum-well width, (ii) the relative intensities of the zero-phonon and one-phonon photoluminescence peaks, found within the non-adiabatic approach, and (iii) the values of the photoluminescence decay time as a function of the quantum-well width.



rate research

Read More

Gallium nitride (GaN) has emerged as an essential semiconductor material for energy-efficient lighting and electronic applications owing to its large direct bandgap of 3.4 eV. Present GaN/AlGaN heterostructures seemingly feature an inherently existing, highly-mobile 2-dimensional electron gas (2DEG), which results in normally-on transistor characteristics. Here we report on an ultra-pure GaN/AlGaN layer stack grown by molecular beam epitaxy, in which such a 2DEG is absent at 300 K in the dark, a property previously not demonstrated. Illumination with ultra-violet light however, generates a 2DEG at the GaN/AlGaN interface and the heterostructure becomes electrically conductive. At temperatures below 150 K this photo-conductivity is persistent with an insignificant dependence of the 2D channel density on the optical excitation power. Residual donor impurity concentrations below 10$^{17}$ cm$^{-3}$ in the GaN/AlGaN layer stack are one necessity for our observations. Fabricated transistors manifest that these characteristics enable a future generation of normally-off as well as light-sensitive GaN-based device concepts.
GaN and the heterostructures are attractive in condensed matter science and applications for electronic devices. We measure the electron transport in GaN/AlGaN field-effect transistors (FETs) at cryogenic temperature. We observe formation of quantum dots in the conduction channel near the depletion of the 2-dimensional electron gas (2DEG). Multiple quantum dots are formed in the disordered potential induced by impurities in the FET conduction channel. We also measure the gate insulator dependence of the transport properties. These results can be utilized for the development of quantum dot devices utilizing GaN/AlGaN heterostructures and evaluation of the impurities in GaN/AlGaN FET channels.
289 - C. B. Lim , A. Ajay , C. Bougerol 2015
This paper assesses intersubband transitions in the 1 to 10 THz frequency range in nonpolar m-plane GaN/AlGaN multi-quantum-wells deposited on free-standing semi-insulating GaN substrates. The quantum wells were designed to contain two confined electronic levels, decoupled from the neighboring wells. Structural analysis reveals flat and regular quantum wells in the two perpendicular inplane directions, with high-resolution images showing inhomogeneities of the Al composition in the barriers along the growth axis. We do not observe extended structural defects introduced by the epitaxial process. Low-temperature intersubband absorption from 1.5 to 9 THz is demonstrated, covering part of the 7 to 10 THz band forbidden to GaAs-based technologies.
154 - Mahdi Hajlaoui 2021
Quantum well (QW) heterostructures have been extensively used for the realization of a wide range of optical and electronic devices. Exploiting their potential for further improvement and development requires a fundamental understanding of their electronic structure. So far, the most commonly used experimental techniques for this purpose have been all-optical spectroscopy methods that, however, are generally averaged in momentum space. Additional information can be gained by angle-resolved photoelectron spectroscopy (ARPES), which measures the electronic structure with momentum resolution. Here we report on the use of extremely low energy ARPES (photon energy $sim$ 7 eV) to increase its depth sensitivity and access buried QW states, located at 3 nm and 6 nm below the surface of cubic-GaN/AlN and GaAs/AlGaAs heterostructures, respectively. We find that the QW states in cubic-GaN/AlN can indeed be observed, but not their energy dispersion because of the high surface roughness. The GaAs/AlGaAs QW states, on the other hand, are buried too deep to be detected by extremely low energy ARPES. Since the sample surface is much flatter, the ARPES spectra of the GaAs/AlGaAs show distinct features in momentum space, which can be reconducted to the band structure of the topmost surface layer of the QW structure. Our results provide important information about the samples properties required to perform extremely low energy ARPES experiments on electronic states buried in semiconductor heterostructures.
The resonant circular photogalvanic effect is observed in wurtzite (0001)-oriented GaN low-dimensional structures excited by infrared radiation. The current is induced by angular momentum transfer of photons to the photoexcited electrons at resonant inter-subband optical transitions in a GaN/AlGaN heterojunction. The signal reverses upon the reversal of the radiation helicity or, at fixed helicity, when the propagation direction of the photons is reversed. Making use of the tunability of the free-electron laser FELIX we demonstrate that the current direction changes by sweeping the photon energy through the intersubband resonance condition, in agreement with theoretical considerations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا