No Arabic abstract
We consider several new classes of viable vector field alternatives to the inflaton and quintessence scalar fields. Spatial vector fields are shown to be compatible with the cosmological anisotropy bounds if only slightly displaced from the potential minimum while dominant, or if driving an anisotropic expansion with nearly vanishing quadropole today. The Bianchi I model with a spatial field and an isotropic fluid is studied as a dynamical system, and several types of scaling solutions are found. On the other hand, time-like fields are automatically compatible with large-scale isotropy. We show that they can be dynamically important if non-minimal gravity couplings are taken into account. As an example, we reconstruct a vector-Gauss-Bonnet model which generates the concordance model acceleration at late times and supports an inflationary epoch at high curvatures. The evolution of vortical perturbations is considered.
Empirical theories of Dark Matter like MOND gravity and of Dark Energy like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general hence natural framework? Here we propose the natural Lagrangian of such a framework based on simple dimensional analysis and co-variant symmetry requirements, and explore various outcomes in a top-down fashion. Our framework preserves the co-variant formulation of GR, but allows the expanding physical metric be bent by a single new species of Dark Fluid flowing in space-time. Its non-uniform stress tensor and current vector are simply functions of a vector field of variable norm, resembling the 4-vector electromagnetic potential description for the photon fluid, but is dark (e.g., by very early decoupling from the baryon-radiation fluid). The Dark Fluid framework naturally branches into a continuous spectrum of theories with Dark Energy and Dark Matter effects, including the $f(R)$ gravity, TeVeS-like theories, Einstein-Aether and $ uLambda$ theories as limiting cases. When the vector field degenerates into a pure Higgs-like scalar field, we obtain the physics for inflaton and quintessence. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions. Choices of parameters can be made to pass BBN, PPN, and causality constraints. The Dark Fluid is inspired to unify/simplify the astronomically successful ingredients of previous constructions: the desired effects of inflaton plus quintessence plus Cold DM particle fields or MOND-like scalar field(s) are shown largely achievable by one vector field only.
We consider a model of inflation consisting a triplet of $U(1)$ vector fields with the parity violating interaction which is non-minimally coupled to inflaton. The vector field sector enjoys global $O(3)$ symmetry which admits isotropic configuration and provides not only vector modes but also scalar and tensor modes. We decompose the scalar perturbations into the adiabatic, entropy and isocurvature perturbations and compute all power spectra and cross correlations of the scalar and the tensor sectors. The tensor modes associated with the vector fields contribute to the power spectrum of gravitational waves while the parity violating term generates chirality in gravitational power spectra and bispectra. We study nonlinear scalar and tensor perturbations and compute all bispectra and three-point cross-correlations. In particular, it is shown that the non-Gaussianity of curvature perturbations and gravitational waves are enhanced by the vector field perturbations. We show that non-Gaussianities put strong constraints on the model parameters such as the parity violating coupling and the fractional energy of the vector fields.
A dynamical scalar field represents the simplest generalization of a pure Cosmological Constant as a candidate to explain the recent evidence in favour of the accelerated cosmic expansion. We review the dynamical properties of such a component, and argue that, even if the background expectation value of this field is fixed and the equation of state is the same as a Cosmological Constant, scalar field fluctuations can still be used to distinguish the two components. We compare predicted spectra of Cosmic Microvave Background (CMB) anisotropies in tracking scalar field cosmologies with the present CMB data, in order to get constraints on the amount and equation of state of dark energy. High precision experiments like SNAP, {sc Planck} and {sc SNfactory}, together with the data on Large Scale Structure, are needed to probe this issue with the necessary accuracy. Here we show the intriguing result that, with a strong prior on the value of the Hubble constant today, the assumption of a flat universe, and consistency relations between amplitude and spectral index of primordial gravitational waves, the present CMB data at $1sigma$ give indication of a dark energy equation of state larger than -1, while the ordinary Cosmological Constant is recovered at $2sigma$.
We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with $k^2ll {cal H}ma$, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with $k^2gg {cal H}ma$, we get a wave-like behaviour in which the sound speed is non-vanishing and of order $c_s^2simeq k^2/m^2a^2$. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order $(Phi-Psi)/Phisim c_s^2$. Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also $h/Phisim c_s^2$. This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.
In N=1 supergravity the tree-level scalar potential of the hidden sector may have a minimum with broken local supersymmetry (SUSY) as well as a supersymmetric Minkowski vacuum. These vacua can be degenerate, allowing for a consistent implementation of the multiple point principle. The first minimum where SUSY is broken can be identified with the physical phase in which we live. In the second supersymmetric phase, in flat Minkowski space, SUSY may be broken dynamically either in the observable or in the hidden sectors inducing a tiny vacuum energy density. We argue that the exact degeneracy of these phases may shed light on the smallness of the cosmological constant. Other possible phenomenological implications are also discussed. In particular, we point out that the presence of such degenerate vacua may lead to small values of the quartic Higgs coupling and its beta function at the Planck scale in the physical phase.