Do you want to publish a course? Click here

From Euclidean to Minkowski space with the Cauchy-Riemann equations

91   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We present an elementary method to obtain Greens functions in non-perturbative quantum field theory in Minkowski space from calculated Greens functions in Euclidean space. Since in non-perturbative field theory the analytical structure of amplitudes is many times unknown, especially in the presence of confined fields, dispersive representations suffer from systematic uncertainties. Therefore we suggest to use the Cauchy-Riemann equations, that perform the analytical continuation without assuming global information on the function in the entire complex plane, only in the region through which the equations are solved. We use as example the quark propagator in Landau gauge Quantum Chromodynamics, that is known from lattice and Dyson-Schwinger studies in Euclidean space. The drawback of the method is the instability of the Cauchy-Riemann equations to high-frequency noise, that makes difficult to achieve good accuracy. We also point out a few curiosities related to the Wick rotation.



rate research

Read More

The challenge to obtain from the Euclidean Bethe--Salpeter amplitude the amplitude in Minkowski is solved by resorting to un-Wick rotating the Euclidean homogeneous integral equation. The results obtained with this new practical method for the amputated Bethe--Salpeter amplitude for a two-boson bound state reveals a rich analytic structure of this amplitude, which can be traced back to the Minkowski space Bethe--Salpeter equation using the Nakanishi integral representation. The method can be extended to small rotation angles bringing the Euclidean solution closer to the Minkowski one and could allow in principle the extraction of the longitudinal parton density functions and momentum distribution amplitude, for example.
Some results obtained by a new method for solving the Bethe-Salpeter equation are presented. The method is valid for any kernel given by irreducible Feynman graphs. The Bethe-Salpeter amplitude, both in Minkowski and in Euclidean spaces, and the binding energy for ladder + cross-ladder kernel are found. We calculate also the corresponding electromagnetic form factor.
In this note we reexamine the possibility of extracting parton distribution functions from lattice simulations. We discuss the case of quasi-parton distribution functions, the possibility of using the reduced Ioffe-time distributions and the more recent proposal of directly making reference to the computation of the current-current $T$-product. We show that in all cases the process of renormalization hindered by lattice momenta limitation represents an obstruction to a direct Euclidean calculation of the parton distribution function.
CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent extra assumptions, and it is an open question if they hold for familiar statistical-physics CFTs such as the critical 3d Ising model. Here we consider Wightman 4-point functions of scalar primaries in Lorentzian signature. We derive a minimal set of their properties solely from the Euclidean unitary CFT axioms, without using extra assumptions. We establish all Wightman axioms (temperedness, spectral property, local commutativity, clustering), Lorentzian conformal invariance, and distributional convergence of the s-channel Lorentzian OPE. This is done constructively, by analytically continuing the 4-point functions using the s-channel OPE expansion in the radial cross-ratios $rho, bar{rho}$. We prove a key fact that $|rho|, |bar{rho}| < 1$ inside the forward tube, and set bounds on how fast $|rho|, |bar{rho}|$ may tend to 1 when approaching the Minkowski space. We also provide a guide to the axiomatic QFT literature for the modern CFT audience. We review the Wightman and Osterwalder-Schrader (OS) axioms for Lorentzian and Euclidean QFTs, and the celebrated OS theorem connecting them. We also review a classic result of Mack about the distributional OPE convergence. Some of the classic arguments turn out useful in our setup. Others fall short of our needs due to Lorentzian assumptions (Mack) or unverifiable Euclidean assumptions (OS theorem).
160 - D. Ivanov 1994
Knizhnik-Zamolodchikov-Bernard equations for twisted conformal blocks on compact Riemann surfaces with marked points are written explicitly in a general projective structure in terms of correlation functions in the theory of twisted b-c systems. It is checked that on the moduli space the equations provide a flat connection with the spectral parameter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا