Do you want to publish a course? Click here

Bethe-Salpeter equation with cross-ladder kernel in Minkowski and Euclidean spaces

64   0   0.0 ( 0 )
 Added by Vladimir Karmanov
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

Some results obtained by a new method for solving the Bethe-Salpeter equation are presented. The method is valid for any kernel given by irreducible Feynman graphs. The Bethe-Salpeter amplitude, both in Minkowski and in Euclidean spaces, and the binding energy for ladder + cross-ladder kernel are found. We calculate also the corresponding electromagnetic form factor.



rate research

Read More

We shortly review different methods to obtain the scattering solutions of the Bethe-Salpeter equation in Minkowski space. We emphasize the possibility to obtain the zero energy observables in terms of the Euclidean scattering amplitude.
We present a method to directly solving the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the singularities which appear in the kernel, propagators and Bethe-Salpeter amplitude itself. The off-mass shell scattering amplitude for spinless particles interacting by a one boson exchange is computed for the first time.
The method of solving the Bethe-Salpeter equation in Minkowski space, which we developed previously for spinless particles, is extended to a system of two fermions. The method is based on the Nakanishi integral representation of the amplitude and on projecting the equation on the light-front plane. The singularities in the projected two-fermion kernel are regularized without modifying the original Bethe-Salpeter amplitudes. The numerical solutions for the J=0 bound state with the scalar, pseudoscalar and massless vector exchange kernels are found. The stability of the scalar and positronium states without vertex form factor is discussed. Binding energies are in close agreement with the Euclidean results. Corresponding amplitudes in Minkowski space are obtained.
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
We review a method to directly solve the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the many singularities which appear in the kernel and propagators. The off-mass shell scattering amplitude for spinless particles interacting by a one boson exchange was computed for the first time. Using our Minkowski space solutions for the initial (bound) and final (scattering) states, we calculate elastic and transition (bound to scattering state) electromagnetic form factors. The conservation of the transition electromagnetic current J.q=0, verified numerically, confirms the validity of our solutions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا