Do you want to publish a course? Click here

Spectroscopic metallicities of Vega-like stars

139   0   0.0 ( 0 )
 Added by Carlos Saffe
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: To determine the metallicities of 113 Southern Hemisphere Vega-like candidate stars in relation to the Exoplanet host group and field stars. Methods: We applied two spectroscopic methods of abundance determinations: equivalent width measurements together with the ATLAS9 (Kurucz 1993) model atmospheres and the WIDTH9 program, and a comparison of observed spectra with the grid of synthetic spectra of Munari et al. (2005). Results: For the Vega-like group, the metallicities are indistinguishable from those of field stars not known to be associated with planets or disks. This result is quite different from the metallicities of Exoplanet host stars which are metal-rich in comparison to field stars.



rate research

Read More

Coronagraphic optical observations of six Vega-like stars reveal reflection nebulosities, five of which were previously unknown. The nebulosities illuminated by HD 4881, HD 23362, HD 23680, HD 26676, and HD 49662 resemble that of the Pleiades, indicating an interstellar origin for dust grains. The reflection nebulosity around HD 123160 has a double-arm morphology, but no disk-like feature is seen as close as 2.5 arcsec from the star in K-band adaptive optics data. We demonstrate that uniform density dust clouds surrounding HD 23362, HD 23680 and HD 123160 can account for the observed 12-100 micron spectral energy distributions. For HD 4881, HD 26676, and HD 49662 an additional emission source, such as from a circumstellar disk or non-equilibrium grain heating, is required to fit the 12-25 micron data. These results indicate that in some cases, particularly for Vega-like stars located beyond the Local Bubble (>100 pc), the dust responsible for excess thermal emission may originate from the interstellar medium rather than from a planetary debris system.
120 - N.C. Santos 2005
We present stellar parameters and metallicities for 29 planet-host stars, as well as for a large volume-limited sample of 53 stars not known to be orbited by any planetary-mass companion. These stars add to the results presented in our previous series of papers, providing two large and uniform samples of 119 planet-hosts and 94 ``single stars with accurate stellar parameters and [Fe/H] estimates. The analysis of the results further confirms that stars with planets are metal-rich when compared with average field dwarfs. Important biases that may compromise future studies are also discussed. Finally, we compare the metallicity distributions for single planet-hosts and planet-hosts in multiple stellar systems. The results show that a small difference cannot be excluded, in the sense that the latter sample is slighly overmetallic. However, more data are needed to confirm this correlation.
Dwarf galaxies are generally faint. To derive their age and metallicity distributions, it is critical to optimize the use of any collected photon. Koleva et al., using full spectrum fitting, have found strong population gradients in some dwarf elliptical galaxies. Here, we show that the population profiles derived with this method are consistent and more precise than those obtained with spectrophotometric indices. This allows studying fainter objects in less telescope time.
We present the results from high-resolution spectroscopic measurements to determine metallicities and activities of bright stars in the southern hemisphere. We have measured the iron abundances ([Fe/H]) and chromospheric emission indices (logRHK) of 353 solar-type stars with V=7.5-9.5. [Fe/H] abundances are determined using a custom chi^2 fitting procedure within a large grid of Kurucz model atmospheres. The chromospheric activities were determined by measuring the amount of emission in the cores of the strong CaII HK lines. The sample of metallicities has been compared to other [Fe/H] determinations and was found to agree with these at the +/-0.05 dex level for spectroscopic values and at the +/-0.1 dex level for photometric values. The distribution of chromospheric activities is found to be described by a bimodal distribution, agreeing well with the conclusions from other works. Also an analysis of Maunder Minimum status was attempted and it was found that 6+/-4 stars in the sample could be in a Maunder Minimum phase of their evolution and hence the Sun should only spend a few per cent of its main sequence lifetime in Maunder Minimum.
We have observed the 8-13 $mu$m spectrum (R$sim$250) of the Vega-like star candidate HD145263 using Subaru/COMICS. The spectrum of HD145263 shows the broad trapezoidal silicate feature with the shoulders at 9.3 $mu$m and 11.44 $mu$m, indicating the presence of crystalline silicate grains. This detection implies that crystalline silicate may also be commonly present around Vega-like stars. The 11.44 $mu$m feature is slightly shifted to a longer wavelength compared to the usual 11.2-3 $mu$m crystalline forsterite feature detected toward Herbig Ae/Be stars and T Tauri stars. Although the peak shift due to the effects of the grain size can not be ruled out, we suggest that Fe-bearing crystalline olivine explains the observed peak wavelength fairly well. Fe-bearing silicates are commonly found in meteorites and most interplanetary dust particles, which originate from planetesimal-like asteroids. According to studies of meteorites, Fe-bearing silicate must have been formed in asteroidal planetesimals, supporting the scenario that dust grains around Vega-like stars are of planetesimal origin, if the observed 11.44 $mu$m peak is due to Fe-bearing silicates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا