No Arabic abstract
More than half a century ago Penrose asked: are the superfluid and solid state of matter mutually exclusive or do there exist supersolid materials where the atoms form a regular lattice and simultaneously flow without friction? Recent experiments provide evidence that supersolid behavior indeed exists in Helium-4 -- the most quantum material known in Nature. In this paper we show that large local strain in the vicinity of crystalline defects is the origin of supersolidity in Helium-4. Although ideal crystals of Helium-4 are not supersolid, the gap for vacancy creation closes when applying a moderate stress. While a homogeneous system simply becomes unstable at this point, the stressed core of crystalline defects (dislocations and grain boundaries) undergoes a radical transformation and can become superfluid.
Dislocations are shown to be smooth at zero temperature because of the effective Coulomb-type interaction between kinks. Crossover to finite temperature rougnehing is suggested to be a mechanism responsible for the softening of he4 shear modulus recently observed by Day and Beamish (Nature, {bf 450}, 853 (2007)). We discuss also that strong suppresion of superfuidity along the dislocation core by thermal kinks can lead to locking in of the mechanical and superfluid responses.
The irrotational nature of superfluid helium was discovered through its decoupling from the container under rotation. Similarly, the resonant period drop of a torsional oscillator (TO) containing solid helium was first interpreted as the decoupling of solid from the TO and appearance of supersolid. However, the resonant period can be changed by mechanisms other than supersolid, such as the elastic stiffening of solid helium that is widely accepted as the reason for the TO response. To demonstrate the irrotational nature more directly, the previous experiments superimposed the dc rotation onto the TO and revealed strong suppression on the TO response without affecting the shear modulus. This result is inconsistent with the simple temperature-dependent elasticity model and supports the supersolid scenario. Here, we re-examine the rotational effect on solid helium with a two-frequency rigid TO to clarify the conflicting observations. Surprisingly, most of the result of previous rotation experiments were not reproduced. Instead, we found a very interesting superfluid-like irrotational response that cannot be explained by elastic models.
A path integral Monte Carlo method based on the worm algorithm has been developed to compute the chemical potential of interacting bosonic quantum fluids. By applying it to finite-sized systems of helium-4 atoms, we have confirmed that the chemical potential scales inversely with the number of particles to lowest order. The introduction of a simple scaling form allows for the extrapolation of the chemical potential to the thermodynamic limit, where we observe excellent agreement with known experimental results for helium-4 at saturated vapor pressure. We speculate on future applications of the proposed technique, including its use in studies of confined quantum fluids.
The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater number of vortices are energetically favored. Though the cloud anisotropy and moment of inertia approach those of a classical fluid at high frequencies, the observed vortex density is consistently lower than the solid-body estimate. Furthermore, the vortices are found to arrange themselves in highly regular triangular arrays, with little distortion even near the condensate surface. These results are shown to be a direct consequence of the inhomogeneous confining potential.
We investigate the thermodynamics of a crystalline solid applying q-deformed algebra of Fibonacci oscillators through the generalized Fibonacci sequence of two real and independent deformation parameters q1 and q2. We based part of our study on both Einstein and Debye models, exploring primarily (q1,q2)-deformed thermal and electric conductivities as a function of Debye specific heat. The results revealed that q-deformation acts as a factor of disorder or impurity, modifying the characteristics of a crystalline structure. Specially, one may find the possibility of adjusting the Fibonacci oscillators to describe the change of thermal and electrical conductivities of a given element as one inserts impurities. Each parameter can be associated to different types of deformations such as disorders and impurities.