Do you want to publish a course? Click here

Dynamical chiral symmetry breaking in SU(N_{c}) gauge theories with large number of fermion flavors

82   0   0.0 ( 0 )
 Added by Oleksandr Gromenko
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we examine a phase transition in $SU(N_{c})$ gauge theories governed by the existence of an infrared fixed point of the renormalization group $beta$ function. The nonlinear integral Schwinger-Dyson equation for a mass function of massless fermions is solved numerically using the exact expression of the running coupling in two-loop approximation for an SU(3) gauge theory. Based on the obtained solution of the Schwinger-Dyson equation, the value of the chiral condensate, $<bar{q}q>$, and the decay constant, $f_{pi}$, of bound states (mesons) are calculated for several values of fermion flavors $N_{f}$. We show that this kind of phase transition is a transition of finite order.



rate research

Read More

QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at $T<T_c$ creates electric confinement and flux tubes. The magnetic scenario of QCD proposes that scattering on the non-condensed component of the monopole ensemble at $T>T_c$ plays an important role in explaining the properties of strongly coupled quark-gluon plasma (sQGP) near the deconfinement temperature. In this paper, we study the phenomenon of chiral symmetry breaking and its relation to magnetic monopoles. Specifically, we study the eigenvalue spectrum of the Dirac operator in the basis of fermionic zero modes in an SU(2) monopole background. We find that as the temperature approaches the deconfinement temperature $T_c$ from above, the eigenvalue spectrum has a finite density at $omega = 0$, indicating the presence of a chiral condensate. In addition, we find the critical scaling of the eigenvalue gap to be consistent with that of the correlation length in the 3d Ising model and the BEC transition of monopoles on the lattice.
157 - Thomas Appelquist 1997
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches describe the formation of a gluino condensate. With $N_f$ flavors of quark and squark fields, and with $N_f$ below a certain critical value, the coupled gap equations have a solution for quark and gluino condensate formation, corresponding to breaking of global symmetries and of supersymmetry. This appears to disagree with the newer nonperturbative techniques, but the reliability of gap equations in this context and whether the solution represents the ground state remain unclear.
Considering marginally relevant and relevant deformations of the weakly coupled $(3+1)$-dimensional large $N$ conformal gauge theories introduced in arXiv:2011.13981, we study the patterns of phase transitions in these systems that lead to a symmetry-broken phase in the high temperature limit. These deformations involve only the scalar fields in the models. The marginally relevant deformations are obtained by varying certain double trace quartic couplings between the scalar fields. The relevant deformations, on the other hand, are obtained by adding masses to the scalar fields while keeping all the couplings frozen at their fixed point values. At the $Nrightarrowinfty$ limit, the RG flows triggered by these deformations approach the aforementioned weakly coupled CFTs in the UV regime. These UV fixed points lie on a conformal manifold with the shape of a circle in the space of couplings. In certain parameter regimes a subset of points on this manifold exhibits thermal order characterized by the spontaneous breaking of a global $mathbb Z_2$ or $U(1)$ symmetry and Higgsing of a subset of gauge bosons at all nonzero temperatures. We show that the RG flows triggered by the marginally relevant deformations lead to a weakly coupled IR fixed point which lacks the thermal order. Thus, the systems defined by these RG flows undergo a transition from a disordered phase at low temperatures to an ordered phase at high temperatures. This provides examples of both inverse symmetry breaking and symmetry nonrestoration. For the relevant deformations, we demonstrate that a variety of phase transitions are possible depending on the signs and magnitudes of the masses (squared) added to the scalar fields. Using thermal perturbation theory, we derive the approximate values of the critical temperatures for all these phase transitions. All the results are obtained at the $Nrightarrowinfty$ limit.
We demonstrate that $SO(N_{c})$ gauge theories with matter fields in the vector representation confine due to monopole condensation and break the $SU(N_{F})$ chiral symmetry to $SO(N_{F})$ via the quark bilinear. Our results are obtained by perturbing the ${cal N}=1$ supersymmetric theory with anomaly-mediated supersymmetry breaking.
We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model, we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a noncompact gauge field, which is invariant under U(1) gauge and SU(N) transformations. We consider gauge-symmetry breaking perturbations that are quadratic in the gauge field, such as a photon mass term, and determine their effect on the critical behavior of the gauge-invariant model, focusing mainly on the continuous transitions associated with the charged fixed point of the AH field theory. We discuss their relevance and compute the (gauge-dependent) exponents that parametrize the departure from the critical behavior (continuum limit) of the gauge-invariant model. We also address the critical behavior of lattice AH models with broken gauge symmetry, showing an effective enlargement of the global symmetry, from U(N) to O(2N), which reflects a peculiar cyclic renormalization-group flow in the space of the lattice AH parameters and of the photon mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا