Do you want to publish a course? Click here

NADA: A new code for studying self-gravitating tori around black holes

95   0   0.0 ( 0 )
 Added by Pedro Montero
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new two-dimensional numerical code called Nada designed to solve the full Einstein equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the code using a formulation of the standard 3+1 (ADM) system, the so-called BSSN approach. A key feature of the code is that derivative terms in the spacetime evolution equations are computed using a fourth-order centered finite difference approximation in conjunction with the Cartoon method to impose the axisymmetry condition under Cartesian coordinates (the choice in Nada), and the puncture/moving puncture approach to carry out black hole evolutions. Correspondingly, the general relativistic hydrodynamics equations are written in flux-conservative form and solved with high-resolution, shock-capturing schemes. We perform and discuss a number of tests to assess the accuracy and expected convergence of the code, namely (single) black hole evolutions, shock tubes, and evolutions of both spherical and rotating relativistic stars in equilibrium, the gravitational collapse of a spherical relativistic star leading to the formation of a black hole. In addition, paving the way for specific applications of the code, we also present results from fully general relativistic numerical simulations of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium.



rate research

Read More

We investigate stationary, self-gravitating, magnetised disks (or tori) around black holes. The models are obtained by numerically solving the coupled system of the Einstein equations and the equations of ideal general-relativistic magnetohydrodynamics. The mathematical formulation and numerical aspects of our approach are similar to those reported in previous works modeling stationary self-gravitating perfect-fluid tori, but the inclusion of magnetic fields represents a new ingredient. Following previous studies of purely hydrodynamical configurations, we construct our models assuming Keplerian rotation in the disks and both spinning and spinless black holes. We focus on the case of a toroidal distribution of the magnetic field and build a large set of models corresponding to a wide range of values of the magnetisation parameter, starting with weakly magnetised disks and ending at configurations in which the magnetic pressure dominates over the thermal one. In all our models, the magnetic field affects the equilibrium structure of the torus mainly due to the magnetic pressure. In particular, an increasing contribution of the magnetic field shifts the location of the maximum of the rest-mass density towards inner regions of the disk. The total mass of the system and the angular momentum are affected by the magnetic field in a complex way, that depends on the black hole spin and the location of the inner radius of the disk. The non-linear dynamical stability of the solutions presented in this paper will be reported elsewhere.
Both cosmological expansion and black holes are ubiquitous features of our observable Universe, yet exact solutions connecting the two have remained elusive. To this end, we study self-gravitating classical fields within dynamical spherically symmetric solutions that can describe black holes in an expanding universe. After attempting a perturbative approach of a known black-hole solution with scalar hair, we show by exact methods that the unique scalar field action with first-order derivatives that can source shear-free expansion around a black hole requires noncanonical kinetic terms. The resulting action is an incompressible limit of k-essence, otherwise known as the cuscuton theory, and the spacetime it describes is the McVittie metric. We further show that this solution is an exact solution to the vacuum Hov{r}ava-Lifshitz gravity with anisotropic Weyl symmetry.
155 - A. Spallicci , S. Aoudia 2009
Through detection by low gravitational wave space interferometers, the capture of stars by supermassive black holes will constitute a giant step forward in the understanding of gravitation in strong field. The impact of the perturbations on the motion of the star is computed via the tail, the back-scattered part of the perturbations, or via a radiative Green function. In the former approach, the self-force acts upon the background geodesic, while in the latter, the geodesic is conceived in the total (background plus perturbations) field. Regularisations (mode-sum and Riemann-Hurwitz $zeta$ function) intervene to cancel divergencies coming from the infinitesimal size of the particle. The non-adiabatic trajectories require the most sophisticated techniques for studying the evolution of the motion, like the self-consistent approach.
274 - Hyeong-Chan Kim 2018
We feed a black hole on a self-gravitating radiation and observe what happens during the process. Considering a spherical shell of radiation, we show that the contribution of self-gravity makes the thermodynamic interaction through the bottom of the shell be distinguished from thermodynamic interaction through its top. The growth of a black hole horizon appears to be a sudden jump rather than a sequential increase. We additionally show that much of the entropy will be absorbed into the black hole only at the last moment of the collapse.
211 - A. Ramos , C. Arias , R. Avalos 2021
In a recent paper (Phys. Dark Univ. {bf 31}, 100744 (2021)) it has been obtained new static black hole solutions with primary hairs by the Gravitational Decoupling. In this work we either study the geodesic motion of massive and massless particles around those solutions and restrict the values of the primary hairs by observational data. In particular, we obtain the effective potential, the innermost stable circular orbits, the marginally bounded orbit, and the periastron advance for time--like geodesics. In order to restrict the values taken by the primary hairs we explore their relationship with the rotation parameter of the Kerr black hole giving the same innermost stable circular orbit radius and give the numerical values for the supermassive black holes at Ark 564 and NGC 1365. The photon sphere and the impact parameter associated to null geodesics are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا