Do you want to publish a course? Click here

Low-energy radiative-capture reactions within two-cluster coupled-channel description

94   0   0.0 ( 0 )
 Added by Levchuk Leonid G.
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The formalism that describes radiative-capture reactions at low energies within an extended two-cluster potential model is presented. Construction of the operator of single-photon emission is based on a generalisation of the Siegert theorem with which the amplitude of the electromagnetic process is constructed in an explicitly gauge-independent way. While the starting point for this construction is a microscopic (single-nucleon) current model, the resulting operator of low-energy photon emission by a two-cluster system is expressed in terms of macroscopic quantities for the clusters and does not depend directly on their intrinsic coordinates and momenta. The multichannel algebraic scattering (MCAS) approach has been used to construct the initial- and final-state wave functions. We present a general expression for the scattering wave function obtained from the MCAS T matrix taking into account inelastic channels and Coulomb distortion. The developed formalism has been tested on the 3He(alpha,gamma)7Be reaction cross section at astrophysical energies. The energy dependence of the evaluated cross section and S factor agrees well with that extracted from measurement though the calculated quantities slightly overestimate data.

rate research

Read More

Using a Multi-Channel Algebraic Scattering (MCAS) approach we have analyzed the spectra of two hyper-nuclear systems, Lambda9Be and Lambda13C. We have studied the splitting of the two odd-parity excited levels (1/2- and 3/2-) at 11 MeV excitation in Lambda13C, originated by the weak Lambda-nucleus spin-orbit force. We have also considered the splittings of the 3/2+ and 5/2+ levels in both Lambda9Be and Lambda13C, finding how they originate from couplings to the collective 2+ states of the core nuclei. In both hyper-nuclei, we suggest that there could be additional low-lying resonant states in the Lambda-nucleus continua. From the MCAS approach one can extract also the full coupled-channel scattering wave-function to be used in the calculation of various transition matrix elements. As a first application, we have considered the EM-transition matrix elements for the capture reaction Alpha + 3He -> 7Be + Gamma .
An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the T+T->2n+alpha reaction. The calculation includes the n-alpha and n-n interactions in the final state, angular momentum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from T+T as well as particle spectra from 3He+3He. The R-matrix approach presented here is very general, and can be adapted to a wide variety of problems with three-body final states.
We review recent results for electromagnetic reactions and related sum rules in light and medium-mass nuclei obtained from coupled-cluster theory. In particular, we highlight our recent computations of the photodisintegration cross section of 40Ca and of the electric dipole polarizability for oxygen and calcium isotopes. We also provide new results for the Coulomb sum rule for 4He and 16O. For 4He we perform a thorough comparison of coupled-cluster theory with exact hyperspherical harmonics.
The method of asymptotic normalization coefficients is a standard approach for studies of two-body non-resonant radiative capture processes in nuclear astrophysics. This method suggests a fully analytical description of the radiative capture cross section in the low-energy region of the astrophysical interest. We demonstrate how this method can be generalized to the case of three-body $2p$ radiative captures. It was found that an essential feature of this process is the highly correlated nature of the capture. This reflects the complexity of three-body Coulomb continuum problem. Radiative capture $^{15}$O+$p$+$p rightarrow ^{,17}$Ne+$gamma$ is considered as an illustration.
94 - B. Barmore 2000
The newly developed nonadiabatic method based on the coupled-channel Schroedinger equation with Gamow states is used to study the phenomenon of proton radioactivity. The new method, adopting the weak coupling regime of the particle-plus-rotor model, allows for the inclusion of excitations in the daughter nucleus. This can lead to rather different predictions for lifetimes and branching ratios as compared to the standard adiabatic approximation corresponding to the strong coupling scheme. Calculations are performed for several experimentally seen, non-spherical nuclei beyond the proton dripline. By comparing theory and experiment, we are able to characterize the angular momentum content of the observed narrow resonance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا