Do you want to publish a course? Click here

Persistent Spin Dynamics in the $S=1/2$ V$_{15}$ Molecular Nano-Magnet

125   0   0.0 ( 0 )
 Added by Zaher Salman
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present muon spin lattice relaxation measurements in the V15 spin 1/2 molecular nano-magnet. We find that the relaxation rate in low magnetic fields (<5 kG) is temperature independent below ~10 K, implying that the molecular spin is dynamically fluctuating down to 12 mK. These measurements show that the fluctuation time increases as the temperature is decreased and saturates at a value of ~6 nsec at low temperatures. The fluctuations are attributed to V15 molecular spin dynamics perpendicular to the applied magnetic field direction, induced by coupling between the molecular spin and nuclear spin bath in the system.



rate research

Read More

The molecular compound K$_6$[V$^{IV}_{15}$As$^{III}_6$O$_{42}$(H$_2$O)] $cdot$ 8H$_2$O, in short V$_{15}$, has shown important quantum effects such as coherent spin oscillations. The details of the spin quantum dynamics depend on the exact form of the spin Hamiltonian. In this study, we present a precise analysis of the intramolecular interactions in V$_{15}$. To that purpose, we performed high-field electron spin resonance measurements at 120 GHz and extracted the resonance fields as a function of crystal orientation and temperature. The data are compared against simulations using exact diagonalization to obtain the parameters of the molecular spin Hamiltonian.
Merons are nontrivial topological spin textures highly relevant for many phenomena in solid state physics. Despite their importance, direct observation of such vortex quasiparticles is scarce and has been limited to a few complex materials. Here we show the emergence of merons and antimerons in recently discovered two-dimensional (2D) CrCl3 at zero magnetic field. We show their entire evolution from pair creation, their diffusion over metastable domain walls, and collision leading to large magnetic monodomains. Both quasiparticles are stabilized spontaneously during cooling at regions where in-plane magnetic frustration takes place. Their dynamics is determined by the interplay between the strong in-plane dipolar interactions and the weak out-of-plane magnetic anisotropy stabilising a vortex core within a radius of 8-10 nm. Our results push the boundary to what is currently known about non-trivial spin structures in 2D magnets and open exciting opportunities to control magnetic domains via topological quasiparticles.
315 - Mohammad Alidoust 2020
We theoretically study the profile of a supercurrent in two-dimensional Josephson junctions with Rashba-Dresselhaus spin-orbit interaction (RDSOI) in the presence of a Zeeman field. Through investigating self-biased supercurrent (so called $varphi_0$-Josephson state), we obtain explicit expressions for the functionality of the $varphi_0$ state with respect to RDSOI parameters ($alpha,beta$) and in-plane Zeeman field components ($h_x,h_y$). Our findings reveal that, when the chemical potential ($mu$) is high enough compared to the energy gap ($Delta$) in superconducting electrodes, i.e., $mu gg Delta$, RSOI and DSOI with equal strengths ($|alpha|=|beta|$) cause vanishing $varphi_0$ state independent of magnetization and the type of RDSOI. A Zeeman field with unequal components, i.e., $|h_x| eq |h_y|$, however, can counteract and nullify the destructive impact of equal-strength RDSOIs (for one type only), where $musimDelta$, although $|h_x|= |h_y|$ can still eliminate the $varphi_0$ state. Remarkably, in the $musimDelta$ limit, the $varphi_0$ state is proportional to the multiplication of both components of an in-plane Zeeman field, i.e., $h_xh_y$, which is absent in the $mu gg Delta$ limit. Furthermore, our results of critical supercurrents demonstrate that the persistent spin helices can be revealed in a high enough chemical potential regime $mugg Delta$, while an opposite regime, i.e., $musimDelta$, introduces an adverse effect. In the ballistic regime, the maximum of the critical supercurrent occurs at $|alpha|=|beta|$ and the Zeeman field can boost this feature. The presence of disorder and nonmagnetic impurities change this picture drastically so the minimum of the critical supercurrent occurs at and around the symmetry lines $|alpha|=|beta|$.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that - surprisingly - even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice, that may serve as a framework for more sophisticated theories.
We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase et al., Phys. Rev. B 80, 104405 (2009)] evidenced long-range magnetic order, inconsistent with the previously suggested phenomenological magnetic model of isolated dimers and spin chains. Based on extensive density-functional theory band structure calculations, exact diagonalizations, quantum Monte Carlo simulations, third-order perturbation theory, as well as high-field magnetization measurements, we find that the magnetic properties of CdCu2(BO3)2 are accounted for by a frustrated quasi-2D magnetic model featuring four inequivalent exchange couplings: the leading antiferromagnetic coupling J_d within the structural Cu2O6 dimers, two interdimer couplings J_t1 and J_t2, forming magnetic tetramers, and a ferromagnetic coupling J_it between the tetramers. Based on comparison to the experimental data, we evaluate the ratios of the leading couplings J_d : J_t1 : J_t2 : J_it = 1 : 0.20 : 0.45 : -0.30, with J_d of about 178 K. The inequivalence of J_t1 and J_t2 largely lifts the frustration and triggers long-range antiferromagnetic ordering. The proposed model accounts correctly for the different magnetic moments localized on structurally inequivalent Cu atoms in the ground-state magnetic configuration. We extensively analyze the magnetic properties of this model, including a detailed description of the magnetically ordered ground state and its evolution in magnetic field with particular emphasis on the 1/2-magnetization plateau. Our results establish remarkable analogies to the Shastry-Sutherland model of SrCu2(BO3)2, and characterize the closely related CdCu2(BO3)2 as a material realization for the spin-1/2 decorated anisotropic Shastry-Sutherland lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا