Do you want to publish a course? Click here

Compatibility of high-$Delta mathrm{m}^2$ $ ue$ and $ uebar$ neutrino oscillation searches

536   0   0.0 ( 0 )
 Added by Heather Ray
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

This article presents the compatibility of experimental data from neutrino oscillation experiments with a high-$dmsq$ two-neutrino oscillation hypothesis. Data is provided by the Bugey, Karlsruhe Rutherford Medium Energy Neutrino Experiment 2 (KARMEN2), Los Alamos Liquid Scintillator Neutrino Detector (LSND), and MiniBooNE experiments. The LSND, KARMEN2, and MiniBooNE results are 25.36% compatible within a two-neutrino oscillation hypothesis. However, the point of maximal compatibility is found in a region that is excluded by the Bugey data. A joint analysis of all four experiments, performed in the $sinsqtheta mathrm{vs} dmsq$ region common to all data, finds a maximal compatibility of 3.94%. This result does not account for additions to the neutrino oscillation model from sources such as CP violation or sterile neutrinos.



rate research

Read More

This paper reviews the results of the LSND and MiniBooNE experiments. The primary goal of each experiment was to effect sensitive searches for neutrino oscillations in the mass region with $Delta m^2 sim 1$ eV$^2$. The two experiments are complementary, and so the comparison of results can bring additional information with respect to models with sterile neutrinos. Both experiments obtained evidence for $bar u_mu rightarrow bar u_e$ oscillations, and MiniBooNE also observed a $ u_mu rightarrow u_e$ excess. In this paper, we review the design, analysis, and results from these experiments. We then consider the results within the global context of sterile neutrino oscillation models. The final data sets require a more extended model than the simple single sterile neutrino model imagined at the time that LSND drew to a close and MiniBooNE began. We show that there are apparent incompatibilities between data sets in models with two sterile neutrinos. However, these incompatibilities may be explained with variations within the systematic error. Overall, models with two (or three) sterile neutrinos seem to succeed in fitting the global data, and they make interesting predictions for future experiments.
The MiniBooNE Collaboration reports first results of a search for $ u_e$ appearance in a $ u_mu$ beam. With two largely independent analyses, we observe no significant excess of events above background for reconstructed neutrino energies above 475 MeV. The data are consistent with no oscillations within a two neutrino appearance-only oscillation model.
The SciBooNE and MiniBooNE collaborations report the results of a u_mu disappearance search in the Delta m^2 region of 0.5-40 eV^2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on u_mu disappearance in the 0.5-40 eV^2 Delta m^2 region, with an improvement over previous experimental constraints between 10 and 30 eV^2.
Upward-going stopping muons initiated by atmospheric umu and anumu interactions in the rock below the Soudan 2 detector have been isolated, together with a companion sample of neutrino-induced single muons, created within the detector, which travel downwards and exit. The downward-going sample is consistent with the atmospheric-neutrino flux prediction, but the upward-going sample exhibits a sizeable depletion. Both are consistent with previously reported Soudan-2 neutrino-oscillation results. Inclusion of the two samples in an all-event likelihood analysis, using recent 3D-atmospheric-neutrino-flux calculations, reduces both the allowed oscillation parameter region and the probability of the no-oscillation hypothesis.
A considerable experimental effort is currently under way to test the persistent hints for oscillations due to an eV-scale sterile neutrino in the data of various reactor neutrino experiments. The assessment of the statistical significance of these hints is usually based on Wilks theorem, whereby the assumption is made that the log-likelihood is $chi^2$-distributed. However, it is well known that the preconditions for the validity of Wilks theorem are not fulfilled for neutrino oscillation experiments. In this work we derive a simple asymptotic form of the actual distribution of the log-likelihood based on reinterpreting the problem as fitting white Gaussian noise. From this formalism we show that, even in the absence of a sterile neutrino, the expectation value for the maximum likelihood estimate of the mixing angle remains non-zero with attendant large values of the log-likelihood. Our analytical results are then confirmed by numerical simulations of a toy reactor experiment. Finally, we apply this framework to the data of the Neutrino-4 experiment and show that the null hypothesis of no-oscillation is rejected at the 2.6,$sigma$ level, compared to 3.2,$sigma$ obtained under the assumption that Wilks theorem applies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا