Do you want to publish a course? Click here

Statistical interpretation of sterile neutrino oscillation searches at reactors

93   0   0.0 ( 0 )
 Added by Pilar Coloma
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

A considerable experimental effort is currently under way to test the persistent hints for oscillations due to an eV-scale sterile neutrino in the data of various reactor neutrino experiments. The assessment of the statistical significance of these hints is usually based on Wilks theorem, whereby the assumption is made that the log-likelihood is $chi^2$-distributed. However, it is well known that the preconditions for the validity of Wilks theorem are not fulfilled for neutrino oscillation experiments. In this work we derive a simple asymptotic form of the actual distribution of the log-likelihood based on reinterpreting the problem as fitting white Gaussian noise. From this formalism we show that, even in the absence of a sterile neutrino, the expectation value for the maximum likelihood estimate of the mixing angle remains non-zero with attendant large values of the log-likelihood. Our analytical results are then confirmed by numerical simulations of a toy reactor experiment. Finally, we apply this framework to the data of the Neutrino-4 experiment and show that the null hypothesis of no-oscillation is rejected at the 2.6,$sigma$ level, compared to 3.2,$sigma$ obtained under the assumption that Wilks theorem applies.



rate research

Read More

We study the optimization of a green-field, two-baseline reactor experiment with respect to the sensitivity for electron antineutrino disappearance in search of a light sterile neutrino. We consider both commercial and research reactors and identify as key factors the distance of closest approach and detector energy resolution. We find that a total of 5 tons of detectors deployed at a commercial reactor with a closest approach of 25 m can probe the mixing angle $sin^22theta$ down to $sim5times10^{-3}$ around $Delta m^2sim 1$ eV$^2$. The same detector mass deployed at a research reactor can be sensitive up to $Delta m^2sim20-30$ eV$^2$ assuming a closest approach of 3 m and excellent energy resolution, such as that projected for the Taishan Antineutrino Observatory (TAO). We also find that lithium doping of the reactor could be effective in increasing the sensitivity for higher $Delta m^2$ values.
We investigate the potential for the Deep Underground Neutrino Experiment (DUNE) to probe the existence and effects of a fourth neutrino mass-eigenstate. We study the mixing of the fourth mass-eigenstate with the three active neutrinos of the Standard Model, including the effects of new sources of CP-invariance violation, for a wide range of new mass-squared differences, from lower than 10^-5 eV^2 to higher than 1 eV^2. DUNE is sensitive to previously unexplored regions of the mixing angle - mass-squared difference parameter space. If there is a fourth neutrino, in some regions of the parameter space, DUNE is able to measure the new oscillation parameters (some very precisely) and clearly identify two independent sources of CP-invariance violation. Finally, we use the hypothesis that there are four neutrino mass-eigenstates in order to ascertain how well DUNE can test the limits of the three-massive-neutrinos paradigm. In this way, we briefly explore whether light sterile neutrinos can serve as proxies for other, in principle unknown, phenomena that might manifest themselves in long-baseline neutrino oscillation experiments.
Neutrino oscillations physics is entered in the precision era. In this context accelerator-based neutrino experiments need a reduction of systematic errors to the level of a few percent. Today one of the most important sources of systematic errors are neutrino-nucleus cross sections which in the hundreds-MeV to few-GeV energy region are known with a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of the neutrino-nucleus interaction physics. After introducing neutrino oscillation physics and accelerator-based neutrino experiments, we overview general aspects of the neutrino-nucleus cross sections, both theoretical and experimental views. Then we focus on these quantities in different reaction channels. We start with the quasielastic and quasielastic-like cross section, putting a special emphasis on multinucleon emission channel which attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and differences among them.The discussion is always driven by a comparison with the experimental data. We then consider the one pion production channel where data-theory agreement remains very unsatisfactory. We describe how to interpret pion data, then we analyze in particular the puzzle related to the impossibility of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the $ u_mu$ and $ u_e$ cross sections, relevant for the CP violation experiments. The impact of the nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino oscillation parameters is reviewed. A window to the future is finally opened by discussing projects and efforts in future detectors, beams, and analysis.
269 - C. Lane , S.M. Usman , J. Blackmon 2015
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the Reactor Antineutrino Anomaly. NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a Raghavan Optical Lattice (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator cubical cells 6.3,cm (2.500) on a side. Cell boundaries have a 0.127,mm (0.005) air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
The transition magnetic moment of a sterile-to-active neutrino conversion gives rise to not only radiative decay of a sterile neutrino, but also its non-standard interaction (NSI) with matter. For sterile neutrinos of keV-mass as dark matter candidates, their decay signals are actively searched for in cosmic X-ray spectra. In this work, we consider the NSI that leads to atomic ionization, which can be detected by direct dark matter experiments. It is found that this inelastic scattering process for a nonrelativistic sterile neutrino has a pronounced enhancement in the differential cross section at energy transfer about half of its mass, manifesting experimentally as peaks in the measurable energy spectra. The enhancement effects gradually smear out as the sterile neutrino becomes relativistic. Using data taken with germanium detectors that have fine energy resolution in keV and sub-keV regimes, constraints on sterile neutrino mass and its transition magnetic moment are derived and compared with those from astrophysical observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا