Do you want to publish a course? Click here

On-chip Integration of High-Frequency Electron Paramagnetic Resonance Spectroscopy and Hall-Effect Magnetometry

112   0   0.0 ( 0 )
 Added by Enrique del Barco
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A sensor that integrates high sensitivity micro-Hall effect magnetometry and high-frequency electron paramagnetic resonance spectroscopy capabilities on a single semiconductor chip is presented. The Hall-effect magnetometer was fabricated from a two dimensional electron gas GaAs/AlGaAs heterostructure in the form of a cross, with a 50x50 um2 sensing area. A high-frequency microstrip resonator is coupled with two small gaps to a transmission line with a 50 Ohms impedance. Different resonator lengths are used to obtain quasi-TEM fundamental resonant modes in the frequency range 10-30 GHz. The resonator is positioned on top of the active area of the Hall-effect magnetometer, where the magnetic field of the fundamental mode is largest, thus optimizing the conversion of microwave power into magnetic field at the sample position. The two gaps coupling the resonator and transmission lines are engineered differently. The gap to the microwave source is designed to optimize the loaded quality factor of the resonator (Q = 150) while the gap for the transmitted signal is larger. This latter gap minimizes losses and prevents distortion of the resonance while enabling measurement of the transmitted signal. The large filling factor of the resonator permits sensitivities comparable to that of high-quality factor resonant cavities. The integrated sensor enables measurement of the magnetization response of micron scale samples upon application of microwave fields. In particular, the combined measurement of the magnetization change and the microwave power under cw microwave irradiation of single crystal of molecular magnets is used to determine of the energy relaxation time of the molecular spin states. In addition, real time measurements of the magnetization dynamics upon application of fast microwave pulses are demonstrated



rate research

Read More

We investigate the finite frequency noise of a quantum point contact at filling factor { u} = 5/2 using a weakly coupled resonant LC circuit as a detector. We show how one could spectroscopically address the fractional charged excitations inspecting separately their charge and scaling dimensions. We thus compare the behaviour of the Pfaffian and the anti-Pfaffian non-Abelian edge states models in order to give possible experimental signatures to identify the appropriate model for this fractional quantum Hall states. Finally we investigate how the temperature of the LC resonant circuit can be used in order to enhance the sensibility of the measurement scheme.
Micro-Hall magnetometry is employed to study the magnetization dynamics of a single, micron-size CrO$_2$ grain. With this technique we track the motion of a single domain wall, which allows us to probe the distribution of imperfections throughout the material. An external magnetic field along the grains easy magnetization direction induces magnetization reversal, giving rise to a series of sharp jumps in magnetization. Supported by micromagnetic simulations, we identify the transition to a state with a single cross-tie domain wall, where pinning/depinning of the wall results in stochastic Barkhausen jumps.
181 - M. Loretz , T. Rosskopf , 2012
We experimentally demonstrate a simple and robust protocol for the detection of weak radio-frequency magnetic fields using a single electron spin in diamond. Our method relies on spin locking, where the Rabi frequency of the spin is adjusted to match the MHz signal frequency. In a proof-of-principle experiment we detect a 7.5 MHz magnetic probe field of 40 nT amplitude with <10 kHz spectral resolution over a T_1-limited noise floor of 0.3 nT/rtHz. Rotating-frame magnetometry may provide a direct and sensitive route to high-resolution spectroscopy of nanoscale nuclear spin signals.
The electron-electron interactions effects on the shape of the Fermi surface of doped graphene are investigated. The actual discrete nature of the lattice is fully taken into account. A $pi$-band tight-binding model, with nearest-neighbor hopping integrals, is considered. We calculate the self-energy corrections at zero temperature. Long and short range Coulomb interactions are included. The exchange self-energy corrections for graphene preserve the trigonal warping of the Fermi surface topology, although rounding the triangular shape. The band velocity is renormalized to higher value. Corrections induced by a local Coulomb interaction, calculated by second order perturbation theory, do deform anisotropically the Fermi surface shape. Results are compared to experimental observations and to other theoretical results.
We performed magnetic field and frequency tunable electron paramagnetic resonance spectroscopy of an Er$^{3+}$ doped Y$_2$SiO$_5$ crystal by observing the change in flux induced on a direct current-superconducting quantum interference device (dc-SQUID) loop of a tunable Josephson bifurcation amplifer. The observed spectra show multiple transitions which agree well with the simulated energy levels, taking into account the hyperfine and quadrupole interactions of $^{167}$Er. The sensing volume is about 0.15 pl, and our inferred measurement sensitivity (limited by external flux noise) is approximately $1.5times10^4$ electron spins for a 1 s measurement. The sensitivity value is two orders of magnitude better than similar schemes using dc-SQUID switching readout.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا