Do you want to publish a course? Click here

The Classification Theorem for Compact Surfaces And A Detour On Fractals

140   0   0.0 ( 0 )
 Added by Jean Gallier
 Publication date 2008
  fields
and research's language is English
 Authors Jean Gallier




Ask ChatGPT about the research

The purpose of these notes is to present a fairly complete proof of the classification Theorem for compact surfaces. Other presentations are often quite informal (see the references in Chapter V) and we have tried to be more rigorous. Our main source of inspiration is the beautiful book on Riemann Surfaces by Ahlfors and Sario. However, Ahlfors and Sarios presentation is very formal and quite compact. As a result, uninitiated readers will probably have a hard time reading this book. Our goal is to help the reader reach the top of the mountain and help him not to get lost or discouraged too early. This is not an easy task! We provide quite a bit of topological background material and the basic facts of algebraic topology needed for understanding how the proof goes, with more than an impressionistic feeling. We hope that these notes will be helpful to readers interested in geometry, and who still believe in the rewards of serious hiking!



rate research

Read More

74 - X.-J. Wang , T.-Q. Wang 2021
For the four-color theorem that has been developed over one and half centuries, all people believe it right but without complete proof convincing all1-3. Former proofs are to find the basic four-colorable patterns on a planar graph to reduce a map coloring4-6, but the unavoidable set is almost limitless and required recoloring hardly implements by hand7-14. Another idea belongs to formal proof limited to logical operation15. However, recoloring or formal proof way may block people from discovering the inherent essence of a coloring graph. Defining creation and annihilation operations, we show that four colors are sufficient to color a map and how to color it. We find what trapped vertices and boundary-vertices are, and how they decide how many colors to be required in coloring arbitrary maps. We reveal that there is the fourth color for new adding vertex differing from any three coloring vertices in creation operation. To implement a coloring map, we also demonstrate how to color an arbitrary map by iteratively using creation and annihilation operations. We hope our hand proof is beneficial to understand the mechanisms of the four-color theorem.
129 - Niles Johnson , Donald Yau 2019
We prove a bicategorical analogue of Quillens Theorem A. As an application, we deduce the well-known result that a pseudofunctor is a biequivalence if and only if it is essentially surjective on objects, essentially full on 1-cells, and fully faithful on 2-cells.
341 - Jean Gallier 2014
One of the main goals of these notes is to explain how rotations in reals^n are induced by the action of a certain group, Spin(n), on reals^n, in a way that generalizes the action of the unit complex numbers, U(1), on reals^2, and the action of the unit quaternions, SU(2), on reals^3 (i.e., the action is defined in terms of multiplication in a larger algebra containing both the group Spin(n) and reals^n). The group Spin(n), called a spinor group, is defined as a certain subgroup of units of an algebra, Cl_n, the Clifford algebra associated with reals^n. Since the spinor groups are certain well chosen subgroups of units of Clifford algebras, it is necessary to investigate Clifford algebras to get a firm understanding of spinor groups. These notes provide a tutorial on Clifford algebra and the groups Spin and Pin, including a study of the structure of the Clifford algebra Cl_{p, q} associated with a nondegenerate symmetric bilinear form of signature (p, q) and culminating in the beautiful 8-periodicity theorem of Elie Cartan and Raoul Bott (with proofs).
Even though flt is a number theoretic result we prove that the result depends on the topological as well as the field structure of the underlying space.
We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the the fixed point case (known as Zungs theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The passing to general orbits (Weinstein) is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the precise conditions needed for the theorem to hold (which often have been misstated in the literature).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا