Do you want to publish a course? Click here

Glasma flux tubes and the near side ridge phenomenon at RHIC

92   0   0.0 ( 0 )
 Added by Fran\\c{c}ois Gelis
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the consequences of long range rapidity correlations in the Glasma. Particles produced locally in the transverse plane are correlated by approximately boost invariant flux tubes of longitudinal color electric and magnetic fields that are formed when two sheets of Colored Glass Condensate pass through one another, each acquiring a modified color charge density in the collision. We argue that such long range rapidity correlations persist during the evolution of the Quark Gluon Plasma formed later in the collision. When combined with transverse flow, these correlations reproduce many of the features of the recently observed ridge events in heavy ion collisions at RHIC.



rate research

Read More

56 - Naoto Tanji 2018
Axial charge production at the early stage of heavy-ion collisions is investigated within the framework of real-time lattice simulations at leading order in QCD coupling. Starting from color glass condensate initial conditions, the time evolution of quantum quark fields under classical color gauge fields is computed on a lattice in longitudinally expanding geometry. We consider simple color charge distributions in Lorentz contracted nuclei that realize flux tube-like configurations of color fields carrying nonzero topological charge after a collision. By employing the Wilson fermion extended to the longitudinally expanding geometry, we demonstrate the realization of the axial anomaly on the real-time lattice.
75 - L. Bravina 2002
The production of phi mesons in Au+Au collisions at RHIC and their propagation in a hot and dense nuclear medium is studied within the microscopic quark-gluon string model. The inverse slope parameter of the transverse mass distribution agrees well with that extracted from the STAR data, while the absolute yield of phi is underestimated by a factor 2. It appears that the fusion of strings alone cannot increase the phi yield either. Less than 30% of detectable phis experience elastic scattering, this rate is insufficient for the full thermalization of phi. The directed flow of phi at |y|<2 demonstrates strong antiflow behavior, whereas its elliptic flow rises up to about 3.5% in the same rapidity interval. As a function of transverse momentum it rises linearly with increasing p_t, in agreement with the STAR data, and saturates at p_t > 2 GeV/c.
New experimental data on transverse momentum spectra of strange particles (KS0, K-, K*, phi,...) produced in pp collisions at sqrt s = 200 GeV obtained by the STAR and PHENIX collaborations at RHIC are analysed in the framework of z-scaling approach. Scaling properties of the data z-presentation are illustrated. Self-similarity of strange particle production is discussed. A microscopic scenario of constituent interactions developed within the z-scaling approach is used to study constituent energy loss, proton momentum fraction and recoil mass in dependence on the transverse momentum, strangeness, and mass of the inclusive particle. The obtained results can be useful for understanding strangeness origin, for searching for new physics with strange probes and can serve as a benchmark for complex analyses of self-similar features of strange production in heavy ion collisions.
We discuss our recently proposed interpretation of the discrepancy between the bottle and beam neutron lifetime experiments as a sign of a dark sector. The difference between the outcomes of the two types of measurements is explained by the existence of a neutron dark decay channel with a branching fraction 1%. Phenomenologically consistent particle physics models for the neutron dark decay can be constructed and they involve a strongly self-interacting dark sector. We elaborate on the theoretical developments around this idea and describe the efforts undertaken to verify it experimentally.
The ratio of nuclear modification factors of high-$p_T$ heavy-flavored mesons tolight-flavored hadrons (heavy-to-light ratio) is shown to be a sensitive tool to test medium-induced energy loss at RHIC and LHC energies. Heavy-to-light ratios of $D$ mesons at RHIC in the region $7<p_T<12$ GeV, and of $D$ and $B$ mesons at the LHC in the region $10<p_T<20$ GeV, are proposed for such a test. Finally, the different contributions to the nuclear modification factor for electrons at RHIC are analyzed. Preliminary PHENIX and STAR data are compatible with radiative energy loss provided the contribution of electrons from beauty decays is small compared to that from charm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا