Do you want to publish a course? Click here

Fine-grained parallelization of similarity search between protein sequences

119   0   0.0 ( 0 )
 Added by Van Hoa Nguyen
 Publication date 2008
  fields Biology
and research's language is English




Ask ChatGPT about the research

This report presents the implementation of a protein sequence comparison algorithm specifically designed for speeding up time consuming part on parallel hardware such as SSE instructions, multicore architectures or graphic boards. Three programs have been developed: PLAST-P, TPLAST-N and PLAST-X. They provide equivalent results compared to the NCBI BLAST family programs (BLAST-P, TBLAST-N and BLAST-X) with a speed-up factor ranging from 5 to 10.



rate research

Read More

We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different design methods and use them to construct several alphabets.We then perform an analysis of seeds built over those alphabet and compare them with the standard Blastp seeding method [2,3], as well as with the family of vector seeds proposed in [4]. While the formalism of subset seed is less expressive (but less costly to implement) than the accumulative principle used in Blastp and vector seeds, our seeds show a similar or even better performance than Blastp on Bernoulli models of proteins compatible with the common BLOSUM62 matrix.
We study the problem of sparse nonlinear model recovery of high dimensional compositional functions. Our study is motivated by emerging opportunities in neuroscience to recover fine-grained models of biological neural circuits using collected measurement data. Guided by available domain knowledge in neuroscience, we explore conditions under which one can recover the underlying biological circuit that generated the training data. Our results suggest insights of both theoretical and practical interests. Most notably, we find that a sign constraint on the weights is a necessary condition for system recovery, which we establish both theoretically with an identifiability guarantee and empirically on simulated biological circuits. We conclude with a case study on retinal ganglion cell circuits using data collected from mouse retina, showcasing the practical potential of this approach.
BACKGROUND: One of the most evident achievements of bioinformatics is the development of methods that transfer biological knowledge from characterised proteins to uncharacterised sequences. This mode of protein function assignment is mostly based on the detection of sequence similarity and the premise that functional properties are conserved during evolution. Most automatic approaches developed to date rely on the identification of clusters of homologous proteins and the mapping of new proteins onto these clusters, which are expected to share functional characteristics. RESULTS: Here, we inverse the logic of this process, by considering the mapping of sequences directly to a functional classification instead of mapping functions to a sequence clustering. In this mode, the starting point is a database of labelled proteins according to a functional classification scheme, and the subsequent use of sequence similarity allows defining the membership of new proteins to these functional classes. In this framework, we define the Correspondence Indicators as measures of relationship between sequence and function and further formulate two Bayesian approaches to estimate the probability for a sequence of unknown function to belong to a functional class. This approach allows the parametrisation of different sequence search strategies and provides a direct measure of annotation error rates. We validate this approach with a database of enzymes labelled by their corresponding four-digit EC numbers and analyse specific cases. CONCLUSION: The performance of this method is significantly higher than the simple strategy consisting in transferring the annotation from the highest scoring BLAST match and is expected to find applications in automated functional annotation pipelines.
The opioid epidemic in the United States claims over 40,000 lives per year, and it is estimated that well over two million Americans have an opioid use disorder. Over-prescription and misuse of prescription opioids play an important role in the epidemic. Individuals who are prescribed opioids, and who are diagnosed with opioid use disorder, have diverse underlying health states. Policy interventions targeting prescription opioid use, opioid use disorder, and overdose often fail to account for this variation. To identify latent health states, or phenotypes, pertinent to opioid use and opioid use disorders, we use probabilistic topic modeling with medical diagnosis histories from a statewide population of individuals who were prescribed opioids. We demonstrate that our learned phenotypes are predictive of future opioid use-related outcomes. In addition, we show how the learned phenotypes can provide important context for variability in opioid prescriptions. Understanding the heterogeneity in individual health states and in prescription opioid use can help identify policy interventions to address this public health crisis.
State-of-the-art deep networks are often too large to deploy on mobile devices and embedded systems. Mobile neural architecture search (NAS) methods automate the design of small models but state-of-the-art NAS methods are expensive to run. Differentiable neural architecture search (DNAS) methods reduce the search cost but explore a limited subspace of candidate architectures. In this paper, we introduce Fine-Grained Stochastic Architecture Search (FiGS), a differentiable search method that searches over a much larger set of candidate architectures. FiGS simultaneously selects and modifies operators in the search space by applying a structured sparse regularization penalty based on the Logistic-Sigmoid distribution. We show results across 3 existing search spaces, matching or outperforming the original search algorithms and producing state-of-the-art parameter-efficient models on ImageNet (e.g., 75.4% top-1 with 2.6M params). Using our architectures as backbones for object detection with SSDLite, we achieve significantly higher mAP on COCO (e.g., 25.8 with 3.0M params) than MobileNetV3 and MnasNet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا