Do you want to publish a course? Click here

Crystallographic Phase Transition and High-Tc Superconductivity in LaFeAsO:F

120   0   0.0 ( 0 )
 Added by Takatoshi Nomura
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Undoped LaFeAsO, parent compound of the newly found high-Tc superconductor, exhibits a sharp decrease in the temperature-dependent resistivity at ~160 K. The anomaly can be suppressed by F doping and the superconductivity appears correspondingly, suggesting a close associate of the anomaly with the superconductivity. We examined the crystal structures, magnetic properties and superconductivity of undoped (normal conductor) and 14 at.% F-doped LaFeAsO (Tc = 20 K) by synchrotron X-ray diffraction, DC magnetic measurements, and ab initio calculations to demonstrate that the anomaly is associated with a phase transition from tetragonal (P4/nmm) to orthorhombic (Cmma) phases at ~160 K as well as an antiferromagnetic transition at ~140 K. These transitions can be explained by spin configuration-dependent potential energy surfaces derived from the ab initio calculations. The suppression of the transitions is ascribed to interrelated effects of geometric and electronic structural changes due to doping by F- ions.



rate research

Read More

Introducing the generalized, non-extensive statistics proposed by Tsallis[1988], into the standard s-wave pairing BCS theory of superconductivity in 2D yields a reasonable description of many of the main properties of high temperature superconductors, provided some allowance is made for non-phonon mediated interactions.
The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression $k_BT_c0 = e^2 Lambda / ellzeta$; $ell$ is the spacing between interacting charges within the layers, zeta is the distance between interacting layers and Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.
153 - G. Garbarino , A. Sow , P. Lejay 2009
We have studied the structural and superconducting properties of tetragonal FeSe under pressures up to 26GPa using synchrotron radiation and diamond anvil cells. The bulk modulus of the tetragonal phase is 28.5(3)GPa, much smaller than the rest of Fe based superconductors. At 12GPa we observe a phase transition from the tetragonal to an orthorhombic symmetry. The high pressure orthorhombic phase has a higher Tc reaching 34K at 22GPa.
We report the occurrence of superconductivity, with maximum Tc = 40 K, in superlattices (SLs) based on two insulating oxides, namely CaCuO2 and SrTiO3. In these (CaCuO2)n/(SrTiO3)m SLs, the CuO2 planes belong only to CaCuO2 block, which is an antiferromagnetic insulator. Superconductivity, confined within few unit cells at the CaCuO2/SrTiO3 interface, shows up only when the SLs are grown in a highly oxidizing atmosphere, because of extra oxygen ions entering at the interfaces. Evidence is reported that the hole doping of the CuO2 planes is obtained by charge transfer from the interface layers, which act as charge reservoir.
81 - H. Rosner , A. Kitaigorodsky , 2001
The layered lithium borocarbide LiBC, isovalent with and structurally similar to the superconductor MgB2, is an insulator due to the modulation within the hexagonal layers (BC vs. B2). We show that hole-doping of LiBC results in Fermi surfaces of B-C p sigma character that couple very strongly to B-C bond stretching modes, precisely the features that lead to superconductivity at Tc = 40 K in MgB2. Comparison of Li{0.5}BC with MgB2 indicates the former to be a prime candidate for electron-phonon coupled superconductivity at substantially higher temperature than in MgB2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا