Do you want to publish a course? Click here

Comment on Large energy gaps in CaC6 from tunneling spectroscopy: possible evidence of strong-coupling superconductivity

151   0   0.0 ( 0 )
 Added by Nicolas Emery
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Comment on Large energy gaps in CaC6 from tunneling spectroscopy: possible evidence of strong-coupling superconductivity



rate research

Read More

Point-contact tunneling on CaC$_6$ crystals reproducibly reveals superconducting gaps, $Delta$, of 2.3$pm$0.2 meV which are $sim$~40% larger than earlier reports. That puts CaC$_6$ into the class of very strong-coupled superconductors since 2$Delta$/kT$_csim$~4.6. Thus soft Ca phonons will be primarily involved in the superconductivity, a conclusion that explains the large Ca isotope effect found recently for CaC$_6$. Consistency among superconductor-insulator-normal metal (SIN), SIS and Andreev reflection (SN) junctions reinforces the intrinsic nature of this result.
New tunneling data are reported in underdoped Bi2Sr2CaCu2O8-d using superconductor-insulator-superconductor break junctions. Energy gaps, Delta, of 51+2, 54+2 and 57+3 meV are observed for three crystals with Tc=77, 74, and 70 K respectively. These energy gaps are nearly three times larger than for overdoped crystals with similar Tc. Detailed examination of tunneling spectra over a wide doping range from underdoped to overdoped, including the Josephson IcRn product, indicate that these energy gaps are predominantly of superconducting origin.
The superconducting compound, LiFeAs, is studied by scanning tunneling microscopy and spectroscopy. A gap map of the unreconstructed surface indicates a high degree of homogeneity in this system. Spectra at 2 K show two nodeless superconducting gaps with $Delta_1=5.3pm0.1$ meV and $Delta_2=2.5pm0.2$ meV. The gaps close as the temperature is increased to the bulk $T_c$ indicating that the surface accurately represents the bulk. A dip-hump structure is observed below $T_c$ with an energy scale consistent with a magnetic resonance recently reported by inelastic neutron scattering.
We present the first results of directional point-contact spectroscopy in high quality CaC6 samples both along the ab plane and in the c-axis direction. The superconducting order parameter Delta(0), obtained by fitting the Andreev-reflection (AR) conductance curves at temperatures down to 400 mK with the single-band 3D Blonder-Tinkham-Klapwijk model, presents two different distributions in the two directions of the main current injection, peaked at 1.35 and 1.71 meV, respectively. By ab-initio calculations of the AR conductance spectra, we show that the experimental results are in good agreement with the recent predictions of gap anisotropy in CaC6.
To establish the mechanism of unconventional superconductivity in Sr$_2$RUO$_4$, a prerequisite is direct information concerning the momentum-space structure of the energy gaps $Delta_i(k)$, and in particular whether the pairing strength is stronger (dominant) on the quasi-1D ($alpha$ and $beta$) or on the quasi-2D ($gamma$) Fermi surfaces. We present scanning tunneling microscopy (STM) measurements of the density-of-states spectra in the superconducting state of Sr$_2$RuO$_4$ for $0.1 T_C<T<T_C$, and analyze them, along with published thermodynamic data, using a simple phenomenological model. We show that our observation of a single superconducting gap scale with maximum value $2Delta approx 5 T_C$ along with a spectral shape indicative of line nodes is consistent, within a weak-coupling model, with magnetically mediated odd-parity superconductivity generated by dominant, near-nodal Cooper pairing on the $alpha$ and $beta$ bands.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا