Do you want to publish a course? Click here

CeFePO: A Heavy Fermion Metal with Ferromagnetic Correlations

138   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ground state properties of CeFePO, a homologue of the new high temperature superconductors RFePnO(1-x)Fx, were studied by means of susceptibility, specific heat, resistivity, and NMR measurements on polycrystals. All the results demonstrate that this compound is a magnetically non-ordered heavy Fermion metal with a Kondo temperature TK~10K, a Sommerfeld coefficient gamma=700mJ/molK2 and a mass enhancement factor of the order of 200. The absence of a Fe-contribution to the effective moment at high temperatures indicates that the magnetism in CeFePO is completely dominated by the effect of Ce. Thus the strong electronic correlation effects originate from the Ce-4f electrons rather than from the Fe-3d electrons. An enhanced Sommerfeld-Wilson ratio R=5.5 as well as a Korringa product S0/T1TK2~0.065 well below 1 indicate the presence of ferromagnetic correlations. Therefore, CeFePO appears to be on the non-magnetic side of a ferromagnetic instability.



rate research

Read More

215 - S. Kitagawa , H. Ikeda , Y. Nakai 2011
We report that nonmagnetic heavy-fermion (HF) iron oxypnictide CeFePO with two-dimensional XY-type anisotropy shows a metamagnetic behavior at the metamagnetic field H_M simeq 4 T perpendicular to the c-axis and that a critical behavior is observed around H_M. Although the magnetic character is entirely different from that in other Ce-based HF metamagnets, H_M in these metamagnets is linearly proportional to the inverse of the effective mass, or to the temperature where the susceptibility shows a peak. This finding suggests that H_M is a magnetic field breaking the local Kondo singlet, and the critical behavior around H_M is driven by the Kondo breakdown accompanied by the Fermi-surface instability.
104 - Li Huang , Haiyan Lu 2020
Ce$_{3}$Al is an archetypal heavy-fermion compound with multiple crystalline phases. Here, we try to investigate its electronic structures in the hexagonal phase ($alpha$-Ce$_{3}$Al) and cubic phase ($beta$-Ce$_{3}$Al) by means of a combination of density functional theory and single-site dynamical mean-field theory. We confirm that the 4$f$ valence electrons in both phases are itinerant, accompanied with strong valence state fluctuations. Their 4$f$ band structures are heavily renormalized by electronic correlations, resulting in large effective electron masses. The Kondo screening in Ce$_{3}$Al would be protracted over a wide range of temperature since the single-impurity Kondo temperature $T_{K}$ is much higher than the coherent Kondo temperature $T^{*}_{K}$. Especially, the crystal structure of $alpha$-Ce$_{3}$Al forms a layered kagome lattice. We observe conspicuous kagome-derived flat bands and Dirac cones (or gaps) in its quasiparticle band structure. Therefore, it is concluded that the hexagonal phase of Ce$_{3}$Al will be a promising candidate of heavy-fermion kagome metal.
Metal-insulator transitions involve a mix of charge, spin, and structural degrees of freedom, and when strongly-correlated, can underlay the emergence of exotic quantum states. Mott insulators induced by the opening of a Coulomb gap are an important and well-recognized class of transitions, but insulators purely driven by spin correlations are much less common, as the reduced energy scale often invites competition from other degrees of freedom. Here we demonstrate a clean example of a spin-correlation-driven metal-insulator transition in the all-in-all-out pyrochlore antiferromagnet Cd2Os2O7, where the lattice symmetry is fully preserved by the antiferromagnetism. After the antisymmetric linear magnetoresistance from conductive, ferromagnetic domain walls is carefully removed experimentally, the Hall coefficient of the bulk reveals four Fermi surfaces, two of electron type and two of hole type, sequentially departing the Fermi level with decreasing temperature below the Neel temperature, T_N. Contrary to the common belief of concurrent magnetic and metal-insulator transitions in Cd2Os2O7, the charge gap of a continuous metal-insulator transition opens only at T~10K, well below T_N=227K. The insulating mechanism resolved by the Hall coefficient parallels the Slater picture, but without a folded Brillouin zone, and contrasts sharply with the behavior of Mott insulators and spin density waves, where the electronic gap opens above and at T_N, respectively.
We report measurements of inelastic neutron scattering, magnetic susceptibility, magnetization, and the magnetic field dependence of the specific heat for the heavy Fermion compounds Ce$_3$In and Ce$_3$Sn. The neutron scattering results show that the excited crystal field levels have energies $E_1$ = 13.2 meV, $E_2$ = 44.8 meV for Ce$_3$In and $E_1$ = 18.5 meV, $E_2$ = 36.1 meV for Ce$_3$Sn. The Kondo temperature deduced from the quasielastic linewidth is 17 K for Ce$_3$In and 40 K for Ce$_3$Sn. The low temperature behavior of the specific heat, magnetization, and susceptibility can not be well-described by J=1/2 Kondo physics alone, but require calculations that include contributions from the Kondo effect, broadened crystal fields, and ferromagnetic correlations, all of which are known to be important in these compounds. We find that in Ce$_3$In the ferromagnetic fluctuation makes a 10-15 % contribution to the ground state doublet entropy and magnetization. The large specific heat coefficient $gamma$ in this heavy fermion system thus arises more from the ferromagnetic correlations than from the Kondo behavior.
We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, $tau_{rm{AFM}}$ = ($frac{1}{2} frac{1}{2} frac{1}{2}$), and ordered moments that align along the [1 1 1] direction of the cubic unit cell. We describe the scattering in terms of a two-Gaussian peak fit, which consists of a narrower component that appears below $T_{rm{N}}~approx 0.4$ K and corresponds to a magnetic correlation length of $xi_{rm{n}} approx$ 80 $rm{AA}$, and a broad component that persists up to $T^*approx$ 0.7 K and corresponds to antiferromagnetic correlations extending over $xi_{rm{b}} approx$ 20 $rm{AA}$. Our results illustrate the fragile magnetic order present in YbBiPt and provide a path forward for microscopic investigations of the ground states and fluctuations associated with the purported quantum critical point in this heavy-fermion compound.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا