We present precision measurements with MHz uncertainty of the energy gap between asymptotic and well bound levels in the electronic ground state X $^1Sigma_{mathrm{g}}^+$ of the $^{39}$K$_2$ molecule. The molecules are prepared in a highly collimated particle beam and are interrogated in a $Lambda$-type excitation scheme of optical transitions to long range levels close to the asymptote of the ground state, using the electronically excited state A $^1Sigma^+_{rm u}$ as intermediate one. The transition frequencies are measured either by comparison with I$_2$ lines or by absolute measurements using a fs-frequency comb. The determined level energies were used together with Feshbach resonances from cold collisions of $^{39}$K and $^{40}$K reported from other authors to fit new ground state potentials. Precise scattering lengths are determined and tests of the validity of the Born-Oppenheimer approximation for the description of cold collisions at this level of precision are performed.
While the treatment of conical intersections in molecular dynamics generally requires nonadiabatic approaches, the Born-Oppenheimer adiabatic approximation is still adopted as a valid alternative in certain circumstances. In the context of Mead-Truhlar minimal coupling, this paper presents a new closure of the nuclear Born-Oppenheimer equation, thereby leading to a molecular dynamics scheme capturing geometric phase effects. Specifically, a semiclassical closure of the nuclear Ehrenfest dynamics is obtained through a convenient prescription for the nuclear Bohmian trajectories. The conical intersections are suitably regularized in the resulting nuclear particle motion and the associated Lorentz force involves a smoothened Berry curvature identifying a loop-dependent geometric phase. In turn, this geometric phase rapidly reaches the usual topological index as the loop expands away from the original singularity. This feature reproduces the phenomenology appearing in recent exact nonadiabatic studies, as shown explicitly in the Jahn-Teller problem for linear vibronic coupling. Likewise, a newly proposed regularization of the diagonal correction term is also shown to reproduce quite faithfully the energy surface presented in recent nonadiabatic studies.
We measure the ratio $gamma$ of the momentum-transfer to the vibrational quenching cross section for the X ($^1Sigma^+$), $ u=1$, $mathrm{J=0}$ state of molecular thorium monoxide (ThO) in collisions with atomic $^3$He between 800 mK and 2.4 K. We observe indirect evidence for ThO--He van der Waals complex formation, which has been predicted by theory. We determine the 3-body recombination rate constant $Gamma_3$ at 2.4 K, and establish that the binding energy E$_b >$ 4 K.
The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range $19...40$ eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the $C_{2}H_{2}^{+}$ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the $4pi$-collection geometry of velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.
We report on deviations beyond the Born-Oppenheimer approximation in the potassium inter-atomic potentials. Identifying three up-to-now unknown $d$-wave Feshbach resonances, we significantly improve the understanding of the $^{39}$K inter-atomic potentials. Combining these observations with the most recent data on known inter- and intra-isotope Feshbach resonances, we show that Born-Oppenheimer corrections can be determined from atomic collisional properties alone and that significant differences between the homo- and heteronuclear case appear.
We study a three-body system, formed by two identical heavy bosons and a light particle, in the Born-Oppenheimer approximation for an arbitrary dimension $D$. We restrict $D$ to the interval $2,<,D,<,4$, and derive the heavy-heavy $D$-dimensional effective potential proportional to $1/R^2$ ($R$ is the relative distance between the heavy particles), which is responsible for the Efimov effect. We found that the Efimov states disappear once the critical strength of the heavy-heavy effective potential $1/R^2$ approaches the limit $-(D-2)^2/4$. We obtained the scaling function for the $^{133}$Cs-$^{133}$Cs-$^6$Li system as the limit cycle of the correlation between the energies of two consecutive Efimov states as a function of $D$ and the heavy-light binding energy $E^{D}_2$. In addition, we found that the energy of the $(N+1)^{rm th}$ excited state reaches the two-body continuum independently of the dimension $D$ when $sqrt{E^{D}_2/E_3^{(N)}}=0.89$, where $E_3^{(N)}$ is the $N^{rm th}$ excited three-body binding energy.
Stephan Falke
,Horst Knoeckel
,Jan Friebe
.
(2008)
.
"Potassium ground state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy"
.
Christian Lisdat
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا