No Arabic abstract
We present new sets of fragmentation functions in next-to-leading order QCD that are determined from e+e- annihilation data of inclusive particle production. In addition to the O(alpha_s) unpolarized cross section the longitudinal cross section is also used to extract the gluon fragmentation function from e+e- annihilation data. As the O(alpha_s) vanishes for longitudinal polarized photons (or Z bosons), the O(alpha_s^2) corrections are required to reduce the scale ambiguities. Recently, P.J. Rijken and W.L. van Neerven presented the longitudinal coefficient functions to next-to-leading order. We confirm part of their results in this thesis and complete the calculation by the results for the color class C_F*T_R that must be included for a consistent comparison with LEP1 data. The complete set of coefficient functions is then used together with novel data from ALEPH to determine the fragmentation functions for charged hadrons. This set, and also sets for charged pions, kaons, and D^* mesons as well as neutral kaons published previously, can then be employed to test QCD in e+e- annihilation, photoproduction, gamma-gamma collisions, p-p_bar scattering and DIS. Finally, we suggest how the improved knowledge on the fragmentation in particular of the gluon could be used to determine the gluon and charm content of the photon.
We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details necessary to perform the QCD scale evolution and cross section calculation in Mellin moment space. We demonstrate how the description of the data and the theoretical uncertainties are improved when next-to-next-to-leading order QCD corrections are included.
We compute the hydrodynamic relaxation times $tau_pi$ and $tau_j$ for hot QCD at next-to-leading order in the coupling with kinetic theory. We show that certain dimensionless ratios of second-order to first-order transport coefficients obey bounds which apply whenever a kinetic theory description is possible; the computed values lie somewhat above these bounds. Strongly coupled theories with holographic duals strongly violate these bounds, highlighting their distance from a quasiparticle description.
We present the results of our QCD analysis for non-singlet unpolarized quark distributions and structure function $F_2(x,Q^2)$ up to N$^3$LO. In this regards 4-loop anomalous dimension can be obtain from the Pade approximations. The analysis is based on the Jacobi polynomials expansion of the structure function. New parameterizations are derived for the non-singlet quark distributions for the kinematic wide range of $x$ and $Q^2$. Our calculations for non-singlet unpolarized quark distribution functions up to N$^3$LO are in good agreement with available theoretical models. The higher twist contributions of $F_2^{p,d}(x,Q^2)$ are extracted in the large $x$ region in N$^3$LO analysis. The values of $Lambda_{QCD}$ and $alpha_s(M_z^2)$ are determined.
We present the first calculation at next-to-leading order (NLO) in $alpha_s$ of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of $z$, namely the fragmentation function for a gluon into a spin-singlet S-wave state at leading order in the relative velocity. To calculate the real NLO corrections, we introduce a new subtraction scheme that allows the phase-space integrals to be evaluated in 4 dimensions. We extract all ultraviolet and infrared divergences in the real NLO corrections analytically by calculating the phase-space integrals of the subtraction terms in $4-2epsilon$ dimensions. We also extract the divergences in the virtual NLO corrections analytically, and detail the cancellation of all divergences after renormalization. The NLO corrections have a dramatic effect on the shape of the fragmentation function, and they significantly increase the fragmentation probability.
We present for the first time complete next-to-next-to-leading-order coefficient functions to match flavor non-singlet quark correlation functions in position space, which are calculable in lattice QCD, to parton distribution functions (PDFs). Using PDFs extracted from experimental data and our calculated matching coefficients, we predict valence-quark correlation functions that can be confronted by lattice QCD calculations. The uncertainty of our predictions is greatly reduced with higher order matching coefficients. By performing Fourier transformation, we also obtain matching coefficients for corresponding quasi-PDFs and pseudo-PDFs. Our method of calculations can be readily generalized to evaluate the matching coefficients for sea-quark and gluon correlation functions, putting the program to extract partonic structure of hadrons from lattice QCD calculations to be comparable with and complementary to that from experimental measurements.