A valuated group with normal forms is a group with an integer-valued length function satisfying some Lyndons axioms and an additional axiom considered by Hurley. We prove a subgroup theorem for valuated groups with normal forms analogous to Grushko-Neumanns theorem. We study also the CSA property in such groups.
The goal of this paper is to give a group-theoretic proof of the congruence subgroup property for $Aut(F_2)$, the group of automorphisms of a free group on two generators. This result was first proved by Asada using techniques from anabelian geometry, and our proof is, to a large extent, a translation of Asadas proof into group-theoretic language. This translation enables us to simplify many parts of Asadas original argument and prove a quantitative version of the congruence subgroup property for $Aut(F_2)$.
The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gammaright)$? Here $hat{X}$ denotes the profinite completion of $X$. In the case $G=Aut(Gamma)$ we denote $Cleft(Gammaright)=Cleft(Aut(Gamma),Gammaright)$. Let $Gamma$ be a finitely generated group, $bar{Gamma}=Gamma/[Gamma,Gamma]$, and $Gamma^{*}=bar{Gamma}/tor(bar{Gamma})congmathbb{Z}^{(d)}$. Denote $Aut^{*}(Gamma)=textrm{Im}(Aut(Gamma)to Aut(Gamma^{*}))leq GL_{d}(mathbb{Z})$. In this paper we show that when $Gamma$ is nilpotent, there is a canonical isomorphism $Cleft(Gammaright)simeq C(Aut^{*}(Gamma),Gamma^{*})$. In other words, $Cleft(Gammaright)$ is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group $Aut^{*}(Gamma)$. In particular, in the case where $Gamma=Psi_{n,c}$ is a finitely generated free nilpotent group of class $c$ on $n$ elements, we get that $C(Psi_{n,c})=C(mathbb{Z}^{(n)})={e}$ whenever $ngeq3$, and $C(Psi_{2,c})=C(mathbb{Z}^{(2)})=hat{F}_{omega}$ = the free profinite group on countable number of generators.
Answering a question of Dan Haran and generalizing some results of Aschbacher-Guralnick and Suzuki, we prove that given a set of primes pi, any finite group can be generated by a pi-subgroup and a pi-subgroup. This gives a free product description of a countably generated free profinite group.
The congruence subgroup problem for a finitely generated group $Gamma$ asks whether $widehat{Autleft(Gammaright)}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(Gammaright)$? Here $hat{X}$ denotes the profinite completion of $X$. In this paper we first give two new short proofs of two known results (for $Gamma=F_{2}$ and $Phi_{2}$) and a new result for $Gamma=Phi_{3}$: 1. $Cleft(F_{2}right)=left{ eright}$ when $F_{2}$ is the free group on two generators. 2. $Cleft(Phi_{2}right)=hat{F}_{omega}$ when $Phi_{n}$ is the free metabelian group on $n$ generators, and $hat{F}_{omega}$ is the free profinite group on $aleph_{0}$ generators. 3. $Cleft(Phi_{3}right)$ contains $hat{F}_{omega}$. Results 2. and 3. should be contrasted with an upcoming result of the first author showing that $Cleft(Phi_{n}right)$ is abelian for $ngeq4$.
We prove that the finitely presentable subgroups of residually free groups are separable and that the subgroups of type $mathrm{FP}_infty$ are virtual retracts. We describe a uniform solution to the membership problem for finitely presentable subgroups of residually free groups.