Do you want to publish a course? Click here

Magneto-transport properties governed by the antiferromagnetic fluctuations in heavy fermion superconductor CeIrIn$_{5}$

161   0   0.0 ( 0 )
 Added by Yasuyuki Nakajima
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In quasi-two dimensional Ce(Ir,Rh)In$_5$ system, it has been suggested that the phase diagram contains two distinct domes with different heavy fermion superconducting states. We here report the systematic pressure dependence of the electron transport properties in the normal state of CeRh$_{0.2}$Ir$_{0.8}$In$_{5}$ and CeIrIn$_{5}$, which locates in first and second superconducting dome, respectively. We observed non-Fermi liquid behavior at low temperatures in both compounds, including non-quadratic $T-$dependence of the resistivity, large enhancement of the Hall coefficient, and the violation of the Kohlers rule in the magnetoresistance. We show that the cotangent of Hall angle $cot Theta_H$ varies as $T^2$, and the magnetoresistance is quite well scaled by the Hall angle as $Delta rho_{xx}/rho_{xx}propto tan^2Theta_H$. The observed transport anomalies are common features of Ce$M$In$_{5}$ ($M$=Co, Rh, and Ir) and high-$T_c$ cuprates, suggesting that the anomalous transport properties observed in CeIrIn$_{5}$ are mainly governed by the antiferromagnetic spin fluctuations, not by the Ce-valence fluctuations which has been proposed to be the possible origin for the second superconducting dome.



rate research

Read More

The thermal conductivity $kappa$ of the heavy-fermion superconductor CeIrIn$_5$ was measured as a function of temperature down to $T_c$/8, for current directions perpendicular ($J parallel a$) and parallel ($J parallel c$) to the tetragonal c axis. For $J parallel a$, a sizable residual linear term $kappa_0 / T$ is observed, as previously, which confirms the presence of line nodes in the superconducting gap. For $J parallel c$, on the other hand, $kappa / T to 0$ as $T to 0$. The resulting precipitous decline in the anisotropy ratio $kappa_c / kappa_a$ at low temperature rules out a gap structure with line nodes running along the c-axis, such as the d-wave state favoured for CeCoIn$_5$, and instead points to a hybrid gap of $E_g$ symmetry. It therefore appears that two distinct superconducting states are realized in the Ce$M$In$_5$ family.
We have measured the electrical resistivity, thermoelectric power, Hall coefficient, and magnetoresistance (MR) on single crystals of PrOs$_{4}$Sb$_{12}$, LaOs$_{4}$Sb$_{12}$ and NdOs$_{4}$Sb$_{12}$. All the transport properties in PrOs$_{4}$Sb$_{12}$ are similar to those in LaOs$_{4}$Sb$_{12}$ and NdOs$_{4}$Sb$_{12}$ at high temperatures, indicating the localized character of 4$f$-electrons. The transverse MR both in LaOs$_{4}$Sb$_{12}$ and PrOs$_{4}$Sb$_{12}$ tends to saturate for wide field directions, indicating these compounds to be uncompensated metals with no open orbit. We have determined the phase diagram of the field induced ordered phase by the MR measurement for all the principle field directions, which indicates an unambiguous evidence for the $Gamma_{rm 1}$ singlet crystalline electric field ground state.
We report a systematic study of temperature- and field-dependent charge ($boldsymbol{rho}$) and entropy ($mathbf{S}$) transport in the heavy-fermion superconductor CeIrIn$_5$. Its large positive thermopower $S_{xx}$ is typical of Ce-based Kondo lattice systems, and strong electronic correlations play an important role in enhancing the Nernst signal $S_{xy}$. By separating the off-diagonal Peltier coefficient $alpha_{xy}$ from $S_{xy}$, we find that $alpha_{xy}$ becomes positive and greatly enhanced at temperatures well above the bulk $T_c$. Compared with the non-magnetic analog LaIrIn$_5$, these results suggest vortexlike excitations in a precursor state to unconventional superconductivity in CeIrIn$_5$. This study sheds new light on the similarity of heavy-fermion and cuprate superconductors and on the possibility of states not characterized by the amplitude of an order parameter.
A technique for measuring the electrical resistivity and absolute thermopower is presented for pressures up to 30 GPa, temperatures down to 25 mK and magnetic fields up to 10 T. With the examples of CeCu2Ge2 and CeCu2Si2 we focus on the interplay of normal phase and superconducting properties. With increasing pres- sure, the behaviour of CeCu2Ge2 evolves from that of an antiferromagnetically ordered Kondo system to that characteristic of an intermediate valence compound as the Kondo temperature increases by about two orders of magnitude. In the pressure window 8-10 < P < 20 GPa, a superconducting phase occurs which com- petes at low pressure with magnetic ordering. For CeCu2Si2 the effective mass of carriers is probed by both the coefficient of the Fermi liquid law and the ini- tial slope of the upper critical field. The magnetic instability is studied no- tably for CeRu2Ge2 and Yb-based compounds for which pressure-induced magnetic ordering tends to develop. Finally, contrary to conventional wisdom, we argue that in heavy fermions a large part of the residual resistivity is most likely not independent of temperature; tentatively ascribed to Kondo hole, it can be very pressure as well as sample dependent. [electrical resistivity, thermoelectric power, heavy fermion, magnetic order, superconductivity]
Inelastic-neutron-scattering measurements were performed on a single crystal of the heavy-fermion paramagnet UTe$_2$ above its superconducting temperature. We confirm the presence of antiferromagnetic fluctuations with the incommensurate wavevector $mathbf{k}_1=(0,0.57,0)$. A quasielastic signal is found, whose momentum-transfer dependence is compatible with fluctuations of magnetic moments $muparallelmathbf{a}$, with a sine-wave modulation of wavevector $mathbf{k}_1$ and in-phase moments on the nearest U atoms. Low dimensionality of the magnetic fluctuations, consequence of the ladder structure, is indicated by weak correlations along the direction $mathbf{c}$. These fluctuations saturate below the temperature $T_1^*simeq15$~K, in possible relation with anomalies observed in thermodynamic, electrical-transport and nuclear-magnetic-resonance measurements. The absence or weakness of ferromagnetic fluctuations, in our data collected at temperatures down to 2.1 K and energy transfers from 0.6 to 7.5 meV, is emphasized. These results constitute constraints for models of magnetically-mediated superconductivity in UTe$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا