Do you want to publish a course? Click here

Generating Generalized $G_{D-2}$ solutions

205   0   0.0 ( 0 )
 Added by Nora Breton
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show how one can systematically construct vacuum solutions to Einstein field equations with $D-2$ commuting Killing vectors in $D>4$ dimensions. The construction uses Einstein-scalar field seed solutions in 4 dimensions and is performed both for the case when all the Killing directions are spacelike, as well as when one of the Killing vectors is timelike. The later case corresponds to generalizations of stationary axially symmetric solutions to higher dimensions. Some examples representing generalizations of known higher dimensional stationary solutions are discussed in terms of their rod structure and horizon locations and deformations.



rate research

Read More

112 - Zhao-Long Wang 2021
In the $SO(2,d)$ gauge theory formalism of AdS gravity established in arXiv:1811.05286, the dynamics of bulk gravity is emergent from the vanishing of the boundary covariant anomaly for the $SO(2,d)$ conservation law. Parallel with the known results of chiral anomalies, we establish the descendent structure of the holographic $SO(2,d)$ anomaly. The corresponding anomaly characteristic class, bulk Chern-Simons like action as well as the boundary effective action are constructed systematically. The anomalous conservation law is presented both in terms of the covariant and consistent formalisms. Due to the existence of the ruler field, not only the Bardeen-Zumino polynomial, but also the covariant and consistent currents are explicitly constructed.
We consider five-dimensional gravity with a Gauss-Bonnet term in the bulk and an induced gravity term on a 2-brane of codimension-2. We show that this system admits BTZ-like black holes on the 2-brane which are extended into the bulk with regular horizons.
160 - Daniel Kapec , Prahar Mitra 2017
We consider the tree-level scattering of massless particles in $(d+2)$-dimensional asymptotically flat spacetimes. The $mathcal{S}$-matrix elements are recast as correlation functions of local operators living on a space-like cut $mathcal{M}_d$ of the null momentum cone. The Lorentz group $SO(d+1,1)$ is nonlinearly realized as the Euclidean conformal group on $mathcal{M}_d$. Operators of non-trivial spin arise from massless particles transforming in non-trivial representations of the little group $SO(d)$, and distinguished operators arise from the soft-insertions of gauge bosons and gravitons. The leading soft-photon operator is the shadow transform of a conserved spin-one primary operator $J_a$, and the subleading soft-graviton operator is the shadow transform of a conserved spin-two symmetric traceless primary operator $T_{ab}$. The universal form of the soft-limits ensures that $J_a$ and $T_{ab}$ obey the Ward identities expected of a conserved current and energy momentum tensor in a Euclidean CFT$_d$, respectively.
We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Minsner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.
The topology of orientable (2 + 1)d spacetimes can be captured by certain lumps of non-trivial topology called topological geons. They are the topological analogues of conventional solitons. We give a description of topological geons where the degrees of freedom related to topology are separated from the complete theory that contains metric (dynamical) degrees of freedom. The formalism also allows us to investigate processes of quantum topology change. They correspond to creation and annihilation of quantum geons. Selection rules for such processes are derived.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا