No Arabic abstract
The nonintegrable Hamiltonian dynamics of particles placed in a symmetric, spatially periodic potential and subjected to a periodically varying field is explored. Such systems can exhibit a rich diversity of unusual transport features. In particular, depending on the setting of the initial phase of the drive, the possibility of a giant transient directed transport in a symmetric, space-periodic potential when driven with an adiabatically varying field arises. Here, we study the escape scenario and corresponding mean escape times of particles from a trapping region with the subsequent generation of a transient directed flow of an ensemble of particles. It is shown that for adiabatically slow inclination modulations the unidirectional flow proceeds over giant distances. The direction of escape and, hence, of the flow is entirely governed whether the periodic force, modulating the inclination of the potential, starts out initially positive or negative. In the phase space, this transient directed flow is associated with a long-lasting motion taking place within ballistic channels contained in the non-uniform chaotic layer. We demonstrate that for adiabatic modulations all escaping particles move ballistically into the same direction, leading to a giant directed current.
This paper presents an {it ab initio} derivation of the expression given by irreversible thermodynamics for the rate of entropy production for different classes of diffusive processes. The first class are Lorentz gases, where non-interacting particles move on a spatially periodic lattice, and collide elastically with fixed scatterers. The second class are periodic systems where $N$ particles interact with each other, and one of them is a tracer particle which diffuses among the cells of the lattice. We assume that, in either case, the dynamics of the system is deterministic and hyperbolic, with positive Lyapunov exponents. This work extends methods originally developed for a chaotic two-dimensional model of diffusion, the multi-baker map, to higher dimensional, continuous time dynamical systems appropriate for systems with one or more moving particles. Here we express the rate of entropy production in terms of hydrodynamic measures that are determined by the fractal properties of microscopic hydrodynamic modes that describe the slowest decay of the system to an equilibrium state.
We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of particles can show directed ballistic transport in the absence of an average force. We discuss general conditions for such directed transport, like a mixed classical phase space, and elucidate a sum rule that relates the contributions of different phase-space components to transport with each other. We show that regular ratchet transport can be directed against an external potential gradient while chaotic ballistic transport is restricted to unbiased systems. For quantized Hamiltonian ratchets we study transport in terms of the evolution of wave packets and derive a semiclassical expression for the distribution of level velocities which encode the quantum transport in the Floquet band spectra. We discuss the role of dynamical tunneling between transporting islands and the chaotic sea and the breakdown of transport in quantum ratchets with broken spatial periodicity.
We study the conductance of chaotic or disordered wires in a situation where equilibrium transport decomposes into biased diffusion and a counter-moving regular current. A possible realization is a semiconductor nanostructure with transversal magnetic field and suitably patterned surfaces. We find a non-trivial dependence of the conductance on the wire length which differs qualitatively from Ohms law by the existence of a characteristic length scale and a finite saturation value.
The escape rate of a stochastic dynamical system can be found as an expansion in powers of the noise strength. In previous work the coefficients of such an expansion for a one-dimensional map were fitted to a general form containing a few parameters. These parameters were found to be related to the fractal structure of the repeller of the system. The parameter alpha, the noise dimension, remains to be interpreted. This report presents new data for alpha showing that the relation to the dimensions is more complicated than predicted in earlier work and oscillates as a function of the map parameter, in contrast to other dimension-like quantities.
Traditional studies of chaos in conservative and driven dissipative systems have established a correspondence between sensitive dependence on initial conditions and fractal basin boundaries, but much less is known about the relation between geometry and dynamics in undriven dissipative systems. These systems can exhibit a prevalent form of complex dynamics, dubbed doubly transient chaos because not only typical trajectories but also the (otherwise invariant) chaotic saddles are transient. This property, along with a manifest lack of scale invariance, has hindered the study of the geometric properties of basin boundaries in these systems--most remarkably, the very question of whether they are fractal across all scales has yet to be answered. Here we derive a general dynamical condition that answers this question, which we use to demonstrate that the basin boundaries can indeed form a true fractal; in fact, they do so generically in a broad class of transiently chaotic undriven dissipative systems. Using physical examples, we demonstrate that the boundaries typically form a slim fractal, which we define as a set whose dimension at a given resolution decreases when the resolution is increased. To properly characterize such sets, we introduce the notion of equivalent dimension for quantifying their relation with sensitive dependence on initial conditions at all scales. We show that slim fractal boundaries can exhibit complex geometry even when they do not form a true fractal and fractal scaling is observed only above a certain length scale at each boundary point. Thus, our results reveal slim fractals as a geometrical hallmark of transient chaos in undriven dissipative systems.