Do you want to publish a course? Click here

Slim Fractals: The Geometry of Doubly Transient Chaos

46   0   0.0 ( 0 )
 Added by Takashi Nishikawa
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Traditional studies of chaos in conservative and driven dissipative systems have established a correspondence between sensitive dependence on initial conditions and fractal basin boundaries, but much less is known about the relation between geometry and dynamics in undriven dissipative systems. These systems can exhibit a prevalent form of complex dynamics, dubbed doubly transient chaos because not only typical trajectories but also the (otherwise invariant) chaotic saddles are transient. This property, along with a manifest lack of scale invariance, has hindered the study of the geometric properties of basin boundaries in these systems--most remarkably, the very question of whether they are fractal across all scales has yet to be answered. Here we derive a general dynamical condition that answers this question, which we use to demonstrate that the basin boundaries can indeed form a true fractal; in fact, they do so generically in a broad class of transiently chaotic undriven dissipative systems. Using physical examples, we demonstrate that the boundaries typically form a slim fractal, which we define as a set whose dimension at a given resolution decreases when the resolution is increased. To properly characterize such sets, we introduce the notion of equivalent dimension for quantifying their relation with sensitive dependence on initial conditions at all scales. We show that slim fractal boundaries can exhibit complex geometry even when they do not form a true fractal and fractal scaling is observed only above a certain length scale at each boundary point. Thus, our results reveal slim fractals as a geometrical hallmark of transient chaos in undriven dissipative systems.



rate research

Read More

Transient chaos is a characteristic behavior in nonlinear dynamics where trajectories in a certain region of phase space behave chaotically for a while, before escaping to an external attractor. In some situations the escapes are highly undesirable, so that it would be necessary to avoid such a situation. In this paper we apply a control method known as partial control that allows one to prevent the escapes of the trajectories to the external attractors, keeping the trajectories in the chaotic region forever. To illustrate how the method works, we have chosen the Lorenz system for a choice of parameters where transient chaos appears, as a paradigmatic example in nonlinear dynamics. We analyze three quite different ways to implement the method. First, we apply this method by building a 1D map using the successive maxima of one of the variables. Next, we implement it by building a 2D map through a Poincar{e} section. Finally, we built a 3D map, which has the advantage of using a fixed time interval between application of the control, which can be useful for practical applications.
External and internal factors may cause a systems parameter to vary with time before it stabilizes. This drift induces a regime shift when the parameter crosses a bifurcation. Here, we study the case of an infinite dimensional system: a time-delayed oscillator whose time delay varies at a small but non-negligible rate. Our research shows that due to this parameter drift, trajectories from a chaotic attractor tip to other states with a certain probability. This causes the appearance of the phenomenon of transient chaos. By using an ensemble approach, we find a gamma distribution of transient lifetimes, unlike in other non-delayed systems where normal distributions have been found to govern the process. Furthermore, we analyze how the parameter change rate influences the tipping probability, and we derive a scaling law relating the parameter value for which the tipping takes place and the lifetime of the transient chaos with the parameter change rate.
107 - T. Gilbert 2000
The theory of entropy production in nonequilibrium, Hamiltonian systems, previously described for steady states using partitions of phase space, is here extended to time dependent systems relaxing to equilibrium. We illustrate the main ideas by using a simple multibaker model, with some nonequilibrium initial state, and we study its progress toward equilibrium. The central results are (i) the entropy production is governed by an underlying, exponentially decaying fractal structure in phase space, (ii) the rate of entropy production is largely independent of the scale of resolution used in the partitions, and (iii) the rate of entropy production is in agreement with the predictions of nonequilibrium thermodynamics.
We consider analytical formulae that describe the chaotic regions around the main periodic orbit $(x=y=0)$ of the H{e}non map. Following our previous paper (Efthymiopoulos, Contopoulos, Katsanikas $2014$) we introduce new variables $(xi, eta)$ in which the product $xieta=c$ (constant) gives hyperbolic invariant curves. These hyperbolae are mapped by a canonical transformation $Phi$ to the plane $(x,y)$, giving Moser invariant curves. We find that the series $Phi$ are convergent up to a maximum value of $c=c_{max}$. We give estimates of the errors due to the finite truncation of the series and discuss how these errors affect the applicability of analytical computations. For values of the basic parameter $kappa$ of the H{e}non map smaller than a critical value, there is an island of stability, around a stable periodic orbit $S$, containing KAM invariant curves. The Moser curves for $c leq 0.32$ are completely outside the last KAM curve around $S$, the curves with $0.32<c<0.41$ intersect the last KAM curve and the curves with $0.41leq c< c_{max} simeq 0.49$ are completely inside the last KAM curve. All orbits in the chaotic region around the periodic orbit $(x=y=0)$, although they seem random, belong to Moser invariant curves, which, therefore define a structure of chaos. Orbits starting close and outside the last KAM curve remain close to it for a stickiness time that is estimated analytically using the series $Phi$. We finally calculate the periodic orbits that accumulate close to the homoclinic points, i.e. the points of intersection of the asymptotic curves from $x=y=0$, exploiting a method based on the self-intersections of the invariant Moser curves. We find that all the computed periodic orbits are generated from the stable orbit $S$ for smaller values of the H{e}non parameter $kappa$, i.e. they are all regular periodic orbits.
Small networks of chaotic units which are coupled by their time-delayed variables, are investigated. In spite of the time delay, the units can synchronize isochronally, i.e. without time shift. Moreover, networks can not only synchronize completely, but can also split into different synchronized sublattices. These synchronization patterns are stable attractors of the network dynamics. Different networks with their associated behaviors and synchronization patterns are presented. In particular, we investigate sublattice synchronization, symmetry breaking, spreading chaotic motifs, synchronization by restoring symmetry and cooperative pairwise synchronization of a bipartite tree.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا