Do you want to publish a course? Click here

Groebner-Shirshov Bases for Lie Algebras: after A. I. Shirshov

177   0   0.0 ( 0 )
 Added by Yuqun Chen
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we review Shirshovs method for free Lie algebras invented by him in 1962 which is now called the Groebner-Shirshov bases theory.



rate research

Read More

In this paper, we define the Grobner-Shirshov basis for a dialgebra. The Composition-Diamond lemma for dialgebras is given then. As results, we give Grobner-Shirshov bases for the universal enveloping algebra of a Leibniz algebra, the bar extension of a dialgebra, the free product of two dialgebras, and Clifford dialgebra. We obtain some normal forms for algebras mentioned the above.
292 - L. A. Bokut , Yuqun Chen 2008
In this survey article, we report some new results of Groebner-Shirshov bases, including new Composition-Diamond lemmas, applications of some known Composition-Diamond lemmas and content of some expository papers.
In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Groebner-Shirshov bases of free Rota-Baxter algebra, $lambda$-differential algebra and $lambda$-differential Rota-Baxter algebra, respectively. In particular, linear bases of these three free algebras are respectively obtained, which are essentially the same or similar to those obtained by Ebrahimi-Fard and Guo, and Guo and Keigher recently by using other methods.
A new construction of a free inverse semigroup was obtained by Poliakova and Schein in 2005. Based on their result, we find a Groebner-Shirshov basis of a free inverse semigroup relative to the deg-lex order of words. In particular, we give the (unique and shortest) Groebner-Shirshov normal forms in the classes of equivalent words of a free inverse semigroup together with the Groebner-Shirshov algorithm to transform any word to its normal form.
We develop a theory of parafree augmented algebras similar to the theory of parafree groups and explore some questions related to the Parafree Conjecture. We provide an example of finitely generated parafree augmented algebra of infinite cohomological dimension. Motivated by this example, we prove a version of the Composition-Diamond lemma for complete augmented algebras and provide a sufficient condition for augmented algebra to be residually nilpotent on the language of its relations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا