Do you want to publish a course? Click here

Groebner-Shirshov bases for dialgebras

382   0   0.0 ( 0 )
 Added by Yuqun Chen
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we define the Grobner-Shirshov basis for a dialgebra. The Composition-Diamond lemma for dialgebras is given then. As results, we give Grobner-Shirshov bases for the universal enveloping algebra of a Leibniz algebra, the bar extension of a dialgebra, the free product of two dialgebras, and Clifford dialgebra. We obtain some normal forms for algebras mentioned the above.



rate research

Read More

177 - L. A. Bokut , Yuqun Chen 2008
In this paper, we review Shirshovs method for free Lie algebras invented by him in 1962 which is now called the Groebner-Shirshov bases theory.
292 - L. A. Bokut , Yuqun Chen 2008
In this survey article, we report some new results of Groebner-Shirshov bases, including new Composition-Diamond lemmas, applications of some known Composition-Diamond lemmas and content of some expository papers.
A new construction of a free inverse semigroup was obtained by Poliakova and Schein in 2005. Based on their result, we find a Groebner-Shirshov basis of a free inverse semigroup relative to the deg-lex order of words. In particular, we give the (unique and shortest) Groebner-Shirshov normal forms in the classes of equivalent words of a free inverse semigroup together with the Groebner-Shirshov algorithm to transform any word to its normal form.
In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Groebner-Shirshov bases of free Rota-Baxter algebra, $lambda$-differential algebra and $lambda$-differential Rota-Baxter algebra, respectively. In particular, linear bases of these three free algebras are respectively obtained, which are essentially the same or similar to those obtained by Ebrahimi-Fard and Guo, and Guo and Keigher recently by using other methods.
117 - Yuqun Chen , Chanyan Zhong 2008
In this paper, we prove that two-generator one-relator groups with depth less than or equal to 3 can be effectively embedded into a tower of HNN-extensions in which each group has the effective standard normal form. We give an example to show how to deal with some general cases for one-relator groups. By using the Magnus method and Composition-Diamond Lemma, we reprove the G. Higman, B. H. Neumann and H. Neumanns embedding theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا