Do you want to publish a course? Click here

Delay Time Distribution Measurement of Type Ia Supernovae by the Subaru/XMM-Newton Deep Survey and Implications for the Progenitor

190   0   0.0 ( 0 )
 Added by Tomonori Totani
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The delay time distribution (DTD) of type Ia supernovae (SNe Ia) from star formation is an important clue to reveal the still unknown progenitor system of SNe Ia. Here we report on a measurement of the SN Ia DTD in a delay time range of t_Ia = 0.1-8.0 Gyr by using the faint variable objects detected in the Subaru/XMM-Newton Deep Survey (SXDS) down to i ~ 25.5. We select 65 SN candidates showing significant spatial offset from nuclei of the host galaxies having old stellar population at z ~ 0.4-1.2, out of more than 1,000 SXDS variable objects. Although spectroscopic type classification is not available for these, we quantitatively demonstrate that more than ~80% of these should be SNe Ia. The DTD is derived using the stellar age estimates of the old galaxies based on 9 band photometries from optical to mid-infrared wavelength. Combined with the observed SN Ia rate in elliptical galaxies at the local universe, the DTD in t_Ia ~ 0.1-10 Gyr is well described by a featureless power-law as f_D(t_Ia) propto t_Ia^{-1}. The derived DTD is in excellent agreement with the generic prediction of the double-degenerate scenario, giving a strong support to this scenario. In the single-degenerate (SD) scenario, although predictions by simple analytic formulations have broad DTD shapes that are similar to the observation, DTD shapes calculated by more detailed binary population synthesis tend to have strong peaks at characteristic time scales, which do not fit the observation. This result thus indicates either that the SD channel is not the major contributor to SNe Ia in old stellar population, or that improvement of binary population synthesis theory is required. Various sources of systematic uncertainties are examined and tested, but our main conclusions are not affected significantly.



rate research

Read More

We present measurements of the rates of high-redshift Type Ia supernovae derived from the Subaru/XMM-Newton Deep Survey (SXDS). We carried out repeat deep imaging observations with Suprime-Cam on the Subaru Telescope, and detected 1040 variable objects over 0.918 deg$^2$ in the Subaru/XMM-Newton Deep Field. From the imaging observations, light curves in the observed $i$-band are constructed for all objects, and we fit the observed light curves with template light curves. Out of the 1040 variable objects detected by the SXDS, 39 objects over the redshift range $0.2 < z < 1.4$ are classified as Type Ia supernovae using the light curves. These are among the most distant SN Ia rate measurements to date. We find that the Type Ia supernova rate increase up to $z sim 0.8$ and may then flatten at higher redshift. The rates can be fitted by a simple power law, $r_V(z)=r_0(1+z)^alpha$ with $r_0=0.20^{+0.52}_{-0.16}$(stat.)$^{+0.26}_{-0.07}$(syst.)$times 10^{-4} {rm yr}^{-1}{rm Mpc}^{-3}$, and $alpha=2.04^{+1.84}_{-1.96}$(stat.)$^{+2.11}_{-0.86}$(syst.).
311 - Dan Maoz , Filippo Mannucci , 2012
We derive the delay-time distribution (DTD) of type-Ia supernovae (SNe Ia) using a sample of 132 SNe Ia, discovered by the Sloan Digital Sky Survey II (SDSS2) among 66,000 galaxies with spectral-based star-formation histories (SFHs). To recover the best-fit DTD, the SFH of every individual galaxy is compared, using Poisson statistics, to the number of SNe that it hosted (zero or one), based on the method introduced in Maoz et al. (2011). This SN sample differs from the SDSS2 SN Ia sample analyzed by Brandt et al. (2010), using a related, but different, DTD recovery method. Furthermore, we use a simulation-based SN detection-efficiency function, and we apply a number of important corrections to the galaxy SFHs and SN Ia visibility times. The DTD that we find has 4-sigma detections in all three of its time bins: prompt (t < 420 Myr), intermediate (0.4 < t < 2.4 Gyr), and delayed (t > 2.4 Gyr), indicating a continuous DTD, and it is among the most accurate and precise among recent DTD reconstructions. The best-fit power-law form to the recovered DTD is t^(-1.12+/-0.08), consistent with generic ~t^-1 predictions of SN Ia progenitor models based on the gravitational-wave induced mergers of binary white dwarfs. The time integrated number of SNe Ia per formed stellar mass is N_SN/M = 0.00130 +/- 0.00015 Msun^-1, or about 4% of the stars formed with initial masses in the 3-8 Msun range. This is lower than, but largely consistent with, several recent DTD estimates based on SN rates in galaxy clusters and in local-volume galaxies, and is higher than, but consistent with N_SN/M estimated by comparing volumetric SN Ia rates to cosmic SFH.
Close double degenerate binaries are one of the favoured progenitor channels for type Ia supernovae, but it is unclear how many suitable systems there are in the Galaxy. We report results of a large radial velocity survey for double degenerate (DD) binaries using the UVES spectrograph at the ESO VLT (ESO SN Ia Progenitor surveY - SPY). Exposures taken at different epochs are checked for radial velocity shifts indicating close binary systems. We observed 689 targets classified as DA (displaying hydrogen-rich atmospheres), of which 46 turned out to possess a cool companion. We measured radial velocities (RV) of the remaining 643 DA white dwarfs. We managed to secure observations at two or more epochs for 625 targets, supplemented by eleven objects meeting our selection criteria from literature. The data reduction and analysis methods applied to the survey data are described in detail. The sample contains 39 double degenerate binaries, only four of which were previously known. 20 are double-lined systems, in which features from both components are visible, the other 19 are single-lined binaries. We provide absolute RVs transformed to the heliocentric system suitable for kinematic studies. Our sample is large enough to sub-divide by mass: 16 out of 44 low mass targets (<= 0.45 Msun) are detected as DDs, while just 23 of the remaining 567 with multiple spectra and mass >0.45 Msun are double. Although the detected fraction amongst the low mass objects (36.4 +/- 7.3%) is significantly higher than for the higher-mass, carbon/oxygen-core dominated part of the sample (3.9 +/- 0.8%), it is lower than the detection efficiency based upon companion star masses >= 0.05 Msun. This suggests either companion stars of mass < 0.05 Msun, or that some of the low mass white dwarfs are single.
186 - Yoshihiro Ueda 2008
We present the X-ray source catalog in the Subaru/XMM-Newton deep survey. A continuous area of 1.14 deg^2 centered at R.A. = 02h18m and Dec. = -05d is mapped by seven pointings with XMM-Newton covering the 0.2-10 keV band. From the combined images of the EPIC pn and MOS cameras, we detect 866, 1114, 645, and 136 sources with sensitivity limits of 6x10^{-16}, 8x10^{-16}, 3x10^{-15}, and 5x10^{-15} erg cm^{-2} s^{-1} in the 0.5-2, 0.5-4.5, 2-10, and 4.5-10 keV bands, respectively, with detection likelihood >= 7 (corresponding to a confidence level of 99.91%). The catalog consists of 1245 sources in total including 32 extended-source candidates. The averaged log N-log S relations are in good agreement with previous results, bridging the flux range between Chandra deep surveys and brighter surveys. The log N-log S relations show significant spatial variation among pointings on a scale of 0.2 deg^2. Analyzing the auto correlation function, we detect significant clustering signals from the 0.5-2 keV band sample, which can be fit with a power law form (theta/theta_c)^{-0.8} with a correlation length of theta_c=5.9^{+1.0}_{-0.9} arcsec when the integral constraint term is included. In the 2-10 keV band, however, the clustering is not significant with a 90% upper limit of theta_c < 1.5 arcsec.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا