Do you want to publish a course? Click here

Universal Scaling of Pinning Effect on Hall Anomaly near the Vortex Glass Transition and Doping Dependence Problems of Superconductors

132   0   0.0 ( 0 )
 Added by Li He
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We find universal scaling relations of the pinning effect on the Hall resistivity $rho_{xy}$ and Hall angle $theta_{H}$. Considering the extended power law form of $rho_{xx}$ and the microscopic analysis of $sigma_{xy}$, we obtain unified $rho_{xy}$ equations for superconductors with and without double sign reversal. These equations reasonably explain the striking universality in doping dependence found by Nagoaka et al., which contradicts the prediction of the time dependent Ginzburg-Landau equation based on s-wave coupling theory [PRL {bf{80}},3594 (1998)]. A full comparison of experiment with prediction from theoretical models is proposed.



rate research

Read More

In this article, we present evidence for the existence of vortex-solid/glass (VG) to vortex-fluid (VF) transition in a type-II superconductor (SC), NbN. We probed the VG to VF transition in both 2D and 3D films of NbN through studies of magnetoresistance and current-voltage characteristics. The dynamical exponents corresponding to this phase transition were extracted independently from the two sets of measurements. The $H$-$T$ phase diagram for the 2D and 3D SC are found to be significantly different near the critical point. In the case of 3D SC, the exponent values obtained from the two independent measurements show excellent match. On the other hand, for the 2D SC, the exponents obtained from the two experiments were significantly different. We attribute this to the fact that the characteristic length scale diverges near the critical point in a 2D SC in a distinctly different way from its 3D counterpart form scaling behaviour.
Magnetotransport theory of layered superconductors in the flux flow steady state is revisited. Longstanding controversies concerning observed Hall sign reversals are resolved. The conductivity separates into a Bardeen-Stephen vortex core contribution, and a Hall conductivity due to moving vortex charge. This charge, which is responsible for Hall anomaly, diverges logarithmically at weak magnetic field. Its values can be extracted from magetoresistivity data by extrapolation of vortex core Hall angle from the normal phase. Hall anomalies in YBCO, BSCCO, and NCCO data are consistent with theoretical estimates based on doping dependence of London penetration depths. In the appendices, we derive the Streda formula for the hydrodynamical Hall conductivity, and refute previously assumed relevance of Galilean symmetry to Hall anomalies.
We study the elasticity, fluctuations and pinning of a putative spontaneous vortex solid in ferromagnetic superconductors. Using a rigorous thermodynamic argument, we show that in the idealized case of vanishing crystalline pinning anisotropy the long-wavelength tilt modulus of such a vortex solid vanishes identically, as guaranteed by the underlying rotational invariance. The vanishing of the tilt modulus means that, to lowest order, the associated tension elasticity is replaced by the softer, curvature elasticity. The effect of this is to make the spontaneous vortex solid qualitatively more susceptible to the disordering effects of thermal fluctuations and random pinning. We study these effects, taking into account the nonlinear elasticity, that, in three dimensions, is important at sufficiently long length scales, and showing that a ``columnar elastic glass phase of vortices results. This phase is controlled by a previously unstudied zero-temperature fixed point and it is characterized by elastic moduli that have universal strong wave-vector dependence out to arbitrarily long length scales, leading to non-Hookean elasticity. We argue that, although translationally disordered for weak disorder, the columnar elastic glass is stable against the proliferation of dislocations and is therefore a topologically ordered {em elastic} glass. As a result, the phenomenology of the spontaneous vortex state of isotropic magnetic superconductors differs qualitatively from a conventional, external-field-induced mixed state. For example, for weak external fields $H$, the magnetic induction scales {em universally} like $B(H)sim B(0)+ c H^{alpha}$, with $alphaapprox 0.72$.
334 - L.Y. Xing , H. Miao , X.C. Wang 2014
The Cu substitution effect on the superconductivity of LiFeAs has been studied in comparison with Co/Ni substitution. It is found that the shrinking rate of the lattice parameter c for Cu substitution is much smaller than that of Co/Ni substitution. This is in conjugation with the observation of ARPES that shows almost the same electron and hole Fermi surfaces (FSs) size for undoped and Cu substituted LiFeAs sample except for a very small hole band sinking below Fermi level with doping, indicating little doping effect at Fermi surface by Cu substitution, in sharp contrast to the much effective carrier doping effect by Ni or Co.
127 - Ling Qin , Xixiao Ma , Lulin Kuang 2015
In the spin-excitation-mediated pairing mechanism for superconductivity, the geometric frustration effects not only the spin configuration but also the superconducting-state properties. Within the framework of the kinetic-energy-driven superconducting mechanism, the doping and temperature dependence of the Meissner effect in triangular-lattice superconductors is investigated. It is shown that the magnetic-field-penetration depth exhibits an exponential temperature dependence due to the absence of the d-wave gap nodes at the Fermi surface. However, in analogy to the dome-like shape of the doping dependence of the superconducting transition temperature, the superfluid density increases with increasing doping in the lower doped regime, and reaches a maximum around the critical doping, then decreases in the higher doped regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا