Do you want to publish a course? Click here

The (Re-)Discovery of G350.1-0.3: A Young, Luminous Supernova Remnant and Its Neutron Star

186   0   0.0 ( 0 )
 Added by Bryan Gaensler
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an XMM-Newton observation of the long-overlooked radio source G350.1-0.3. The X-ray spectrum of G350.1-0.3 can be fit by a shocked plasma with two components: a high-temperature (1.5 keV) region with a low ionization time scale and enhanced abundances, plus a cooler (0.36 keV) component in ionization equilibrium and with solar abundances. The X-ray spectrum and the presence of non-thermal, polarized, radio emission together demonstrate that G350.1-0.3 is a young, luminous supernova remnant (SNR), for which archival HI and 12-CO data indicate a distance of 4.5 kpc. The diameter of the source then implies an age of only ~900 years. The SNRs distorted appearance, small size and the presence of 12-CO emission along the SNRs eastern edge all indicate that the source is interacting with a complicated distribution of dense ambient material. An unresolved X-ray source, XMMU J172054.5-372652, is detected a few arcminutes west of the brightest SNR emission. The thermal X-ray spectrum and lack of any multi-wavelength counterpart suggest that this source is a neutron star associated with G350.1-0.3, most likely a central compact object, as seen coincident with other young SNRs such as Cassiopeia A.



rate research

Read More

We present a new Chandra observation of supernova remnant (SNR) G350.1-0.3. The high resolution X-ray data reveal previously unresolved filamentary structures and allow us to perform detailed spectroscopy in the diffuse regions of this SNR. Spectral analysis demonstrates that the region of brightest emission is dominated by hot, metal-rich ejecta while the ambient material along the perimeter of the ejecta region and throughout the remnants western half is mostly low-temperature, shocked interstellar/circumstellar medium (ISM/CSM) with solar-type composition. The data reveal that the emission extends far to the west of the ejecta region and imply a lower limit of 6.6 pc on the diameter of the source (at a distance of 4.5 kpc). We show that G350.1-0.3 is likely in the free expansion (ejecta-dominated) stage and calculate an age of 600-1200 years. The derived relationship between the shock velocity and the electron/proton temperature ratio is found to be entirely consistent with that of other SNRs. We perform spectral fits on the X-ray source XMMU J172054.5-372652, a candidate central compact object (CCO), and find that its spectral properties fall within the typical range of other CCOs. We also present archival 24 um data of G350.1-0.3 taken with the Spitzer Space Telescope during the MIPSGAL galactic survey and find that the infrared and X-ray morphologies are well-correlated. These results help to explain this remnants peculiar asymmetries and shed new light on its dynamics and evolution.
We present results of a 400-ks Chandra observation of the young shell supernova remnant (SNR) G11.2-0.3, containing a pulsar and pulsar-wind nebula (PWN). We measure a mean expansion rate for the shell since 2000 of 0.0277+/-0.0018% per yr, implying an age between 1400 and 2400 yr, and making G11.2-0.3 one of the youngest core-collapse SNRs in the Galaxy. However, we find very high absorption ($A_V sim 16^m pm 2^m$), confirming near-IR determinations and ruling out a claimed association with the possible historical SN of 386 CE. The PWN shows strong jets and a faint torus within a larger, more diffuse region of radio emission and nonthermal X-rays. Central soft thermal X-ray emission is anticorrelated with the PWN; that, and more detailed morphological evidence, indicates that the reverse shock has already reheated all ejecta and compressed the PWN. The pulsar characteristic energy-loss timescale is well in excess of the remnant age, and we suggest that the bright jets have been produced since the recompression. The relatively pronounced shell and diffuse hard X-ray emission in the interior, enhanced at the inner edge of the shell, indicate that the immediate circumstellar medium into which G11.2-0.3 is expanding was quite anisotropic. We propose a possible origin for G11.2-0.3 in a stripped-envelope progenitor that had lost almost all its envelope mass, in an anisotropic wind or due to binary interaction, leaving a compact core whose fast winds swept previously lost mass into a dense irregular shell, and which exploded as a Type cIIb or Ibc supernova.
We report Chandra observations of the highly asymmetric core-collapse supernova remnant G350.1-0.3. We document expansion over 9 years away from the roughly stationary central compact object, with sky-plane velocities up to $5000 d_{4.5}$ km s$^{-1}$ ($d_{4.5}$ is the distance in units of 4.5 kpc), redshifts ranging from 900 km s$^{-1}$ to 2600 km s$^{-1}$, and three-dimensional space velocities approaching 6000 km s$^{-1}$. Most of the bright emission comes from heavy-element ejecta particularly strong in iron. Iron-enhanced ejecta are seen at 4000 - 6000 km s$^{-1}$, strongly suggesting that the supernova was not a common Type IIP event. While some fainter regions have roughly solar abundances, we cannot identify clear blast-wave features. Our expansion proper motions indicate that G350.1-0.3 is no more than about 600 years old, independent of distance: the third youngest known core-collapse supernova in the Galaxy, and one of the most asymmetric.
NuSTAR observed G1.9+0.3, the youngest known supernova remnant in the Milky Way, for 350 ks and detected emission up to $sim$30 keV. The remnants X-ray morphology does not change significantly across the energy range from 3 to 20 keV. A combined fit between NuSTAR and CHANDRA shows that the spectrum steepens with energy. The spectral shape can be well fitted with synchrotron emission from a power-law electron energy distribution with an exponential cutoff with no additional features. It can also be described by a purely phenomenological model such as a broken power-law or a power-law with an exponential cutoff, though these descriptions lack physical motivation. Using a fixed radio flux at 1 GHz of 1.17 Jy for the synchrotron model, we get a column density of N$_{rm H}$ = $(7.23pm0.07) times 10^{22}$ cm$^{-2}$, a spectral index of $alpha=0.633pm0.003$, and a roll-off frequency of $ u_{rm rolloff}=(3.07pm0.18) times 10^{17}$ Hz. This can be explained by particle acceleration, to a maximum energy set by the finite remnant age, in a magnetic field of about 10 $mu$G, for which our roll-off implies a maximum energy of about 100 TeV for both electrons and ions. Much higher magnetic-field strengths would produce an electron spectrum that was cut off by radiative losses, giving a much higher roll-off frequency that is independent of magnetic-field strength. In this case, ions could be accelerated to much higher energies. A search for $^{44}$Ti emission in the 67.9 keV line results in an upper limit of $1.5 times 10^{-5}$ $,mathrm{ph},mathrm{cm}^{-2},mathrm{s}^{-1}$ assuming a line width of 4.0 keV (1 sigma).
We report discovery of a shell like structure G354.4+0.0 of size 1.6 that shows morphology of a shell supernova remnant. Part of the structure show polarized emission in NRAO VLA sky survey (NVSS) map. Based on 330 MHz, 1.4 GHz Giant Metrewave Radio Telescope (GMRT) observations and existing observations at higher frequencies, we conclude the partial shell structure showing synchrotron emission is embedded in an extended HII region of size ~4. The spectrum of the diffuse HII region turns over between 1.4 GHz and 330 MHz. HI absorption spectrum shows it to be located more than 5 kpc away from Sun. Based on morphology, non-thermal polarized emission and size, this object is one of the youngest supernova remnants discovered in the Galaxy with an estimated age of about 100-500 years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا