No Arabic abstract
The project of the international Facility for Antiproton and Ion Research (FAIR), co-located to the GSI facility in Darmstadt, has been officially started on November 7, 2007. The current plans of the facility and the planned research program will be described. An investment of about 1 billion euro will permit new physics programs in the areas of low and medium energy antiproton research, heavy ion physics complementary to LHC, as well as in nuclear structure and astrophysics. The facility will comprise about a dozen accelerators and storage rings, which will enable simultaneous operations of up to four different beams.
The Facility for Antiproton and Ion Research (FAIR) will be the accelerator-based flagship research facility in many basic sciences and their applications in Europe for the coming decades. FAIR will open up unprecedented research opportunities in hadron and nuclear physics, in atomic physics and nuclear astrophysics as well as in applied sciences like materials research, plasma physics and radiation biophysics with applications towards novel medical treatments and space science. FAIR is currently under construction as an international facility at the campus of the GSI Helmholtzzentrum for Heavy-Ion Research in Darmstadt, Germany. While the full science potential of FAIR can only be harvested once the new suite of accelerators and storage rings is completed and operational, some of the experimental detectors and instrumentation are already available and will be used starting in summer 2018 in a dedicated research program at GSI, exploiting also the significantly upgraded GSI accelerator chain. The current manuscript summarizes how FAIR will advance our knowledge in various research fields ranging from a deeper understanding of the fundamental interactions and symmetries in Nature to a better understanding of the evolution of the Universe and the objects within.
The standard model and Quantum Chromodynamics (QCD) have undergone rigorous tests at distances much shorter than the size of a nucleon. Up to now, the predicted phenomena are reproduced rather well. However, at distances comparable to the size of a nucleon, new experimental results keep appearing which cannot be described consistently by effective theories based on QCD. The physics of strange and charmed quarks holds the potential to connect the two energy domains, interpolating between the limiting scales of QCD. This is the regime which will be explored using the future Antiproton Annihilations at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). In this contribution some of the most relevant physics topics are detailed; and the reason why PANDA is the ideal detector to study them is given. Precision studies of hadron formation in the charmonium region will greatly advance our understanding of hadronic structure. It may reveal particles beyond the two and three-quark configuration, some of which are predicted to have exotic quantum numbers in that mass region. It will deepen the understanding of the charmonium spectrum, where unpredicted states have been found recently by the B-factories. To date the structure of the nucleon, in terms of parton distributions, has been mainly investigated using scattering experiments. Complementary information will be acquired measuring electro-magnetic final states at PANDA.
An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion beams produced from the IGISOL target chamber. This has resulted in improved feasibility for new experiments by offering reference ions for Penning-trap mass measurements, laser spectroscopy and atom trap experiments.
We present a new event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, UrQMD, to account for hadronic final state interactions. We present first results for nuclear collisions of the FAIR/NICA energy scan program (Au+Au collisions, $sqrt{s_{NN}}=4-11$ GeV). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model EoS, one with a first order phase transition the other with a crossover type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.
Using the technique of quantum transport of the interfering pair we examine the Hanbury-Brown-Twiss (HBT) interferometry signatures for the particle-emitting sources of pions and kaons produced in the heavy ion collisions at GSI-FAIR energies. The evolution of the sources is described by relativistic hydrodynamics with the system equation of state of the first-order phase transition from quark-gluon plasma (QGP) to hadronic matter. We use quantum probability amplitudes in a path-integral formalism to calculate the two-particle correlation functions, where the effects of particle decay and multiple scattering are taken into consideration. We find that the HBT radii of kaons are smaller than those of pions for the same initial conditions. Both the HBT radii of pions and kaons increase with the system initial energy density. The HBT lifetimes of the pion and kaon sources are sensitive to the initial energy density. They are significantly prolonged when the initial energy density is tuned to the phase boundary between the QGP and mixed phase. This prolongations of the HBT lifetimes of pions and kaons may likely be observed in the heavy ion collisions with an incident energy in the GSI-FAIR energy range.