Do you want to publish a course? Click here

A nonaspherical cell-like 2-dimensional simply connected continuum and related constructions

315   0   0.0 ( 0 )
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We prove the existence of a 2-dimensional nonaspherical simply connected cell-like Peano continuum (the space itself was constructed in one of our earlier papers). We also indicate some relations between this space and the well-known Griffiths space from the 1950s.



rate research

Read More

In our earlier papers we constructed examples of 2-dimensional nonaspherical simply-connected cell-like Peano continua, called {sl Snake space}. In the sequel we introduced the functor $SC(-,-)$ defined on the category of all spaces with base points and continuous mappings. For the circle $S^1$, the space $SC(S^1, ast)$ is a Snake space. In the present paper we study the higher-dimensional homology and homotopy properties of the spaces $SC(Z, ast)$ for any path-connected compact spaces $Z$.
We construct a functor $AC(-,-)$ from the category of path connected spaces $X$ with a base point $x$ to the category of simply connected spaces. The following are the main results of the paper: (i) If $X$ is a Peano continuum then $AC(X,x)$ is a cell-like Peano continuum; (ii) If $X$ is $n-$dimensional then $AC(X, x)$ is $(n+1)-$dimensional; and (iii) For a path connected space $X$, $pi_1(X,x)$ is trivial if and only if $pi_2(AC(X, x))$ is trivial. As a corollary, $AC(S^1, x)$ is a 2-dimensional nonaspherical cell-like Peano continuum.
Using the topologist sine curve we present a new functorial construction of cone-like spaces, starting in the category of all path-connected topological spaces with a base point and continuous maps, and ending in the subcategory of all simply connected spaces. If one starts by a noncontractible n-dimensional Peano continuum for any n>0, then our construction yields a simply connected noncontractible (n + 1)-dimensional cell-like Peano continuum. In particular, starting with the circle $mathbb{S}^1$, one gets a noncontractible simply connected cell-like 2-dimensional Peano continuum.
183 - Katsuya Eda 2020
We attach copies of the circle to points of a countable dense subset $D$ of a separable metric space $X$ and construct an earring space $E(X,D)$. We show that the fundamental group of $E(X,D)$ is isomorphic to a subgroup of the Hawaiian earring group, if the space $X$ is simply-connected and locally simply-connected. In addition if the space $X$ is locally path-connected, the space $X$ can be recovered from the fundamental group of $E(X,D)$.
We show that the Snake on a square $SC(S^1)$ is homotopy equivalent to the space $AC(S^1)$ which was investigated in the previous work by Eda, Karimov and Repovvs. We also introduce related constructions $CSC(-)$ and $CAC(-)$ and investigate homotopical differences between these four constructions. Finally, we explicitly describe the second homology group of the Hawaiian tori wedge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا