Stationary rotating strings can be viewed as geodesic motions in appropriate metrics on a two-dimensional space. We obtain all solutions describing stationary rotating strings in flat spacetime as an application. These rotating strings have infinite length with various wiggly shapes. Averaged value of the string energy, the angular momentum and the linear momentum along the string are discussed.
We study the interior of distorted stationary rotating black holes on the example of a Kerr black hole distorted by external static and axisymmetric mass distribution. We show that there is a duality transformation between the outer and inner horizons of the black hole, which is different from that of an electrically charged static distorted black hole. The duality transformation is directly related to the discrete symmetry of the space-time. The black hole horizons area, surface gravity, and angular momentum satisfy the Smarr formula constructed for both the horizons. We formulate the zeroth, the first, and the second laws of black hole thermodynamics for both the horizons of the black hole and show the correspondence between the local and the global forms of the first law. The Smarr formula and the laws of thermodynamics formulated for both the horizons are related by the duality transformation. The distortion is illustrated on the example of a quadrupole and octupole fields. The distortion fields noticeably affect the proper time of a free fall from the outer to the inner horizon of the black hole along the symmetry semi-axes. There is some minimal non-zero value of the quadrupole and octupole moments when the time becomes minimal. The minimal proper time indicates the closest approach of the horizons due to the distortion.
A family of models of counterrotating and rotating relativistic thin discs of infinite extension based on a charged and magnetized Kerr-NUT metric are constructed using the well-known displace, cut and reflect method extended to solutions of vacuum Einstein-Maxwell equations. The metric considered has as limiting cases a charged and magnetized Taub-NUT solution and the well known Kerr-Newman solutions. We show that for Kerr-Newman fields the eigenvalues of the energy-momentum tensor of the disc are for all the values of the parameters real quantities so that these discs do not present heat flow in any case, whereas for charged and magnetized Kerr-NUT and Taub-NUT fields we find always regions with heat flow. We also find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disc as the superposition of two counterrotating charged dust fluids. We show that, in general, it is not possible to take the two counterrotating fluids as circulating along electrogeodesics nor take the two counterrotating tangential velocities as equal and opposite.
The notions of stress and hyperstress are anchored in 3-dimensional continuum mechanics. Within the framework of the 4-dimensional spacetime continuum, stress and hyperstress translate into the energy-momentum and the hypermomentum current, respectively. These currents describe the inertial properties of classical matter fields in relativistic field theory. The hypermomentum current can be split into spin, dilation, and shear current. We discuss the conservation laws of momentum and hypermomentum and point out under which conditions the momentum current becomes symmetric.
We consider the metric perturbations around a stationary rotating Nambu-Goto string in Minkowski spacetime. By solving the linearized Einstein equations, we study the effects of azimuthal frame-dragging around the rotation axis and linear frame-dragging along the rotation axis, the Newtonian logarithmic potential, and the angular deficit around the string as the potential mode. We also investigate gravitational waves propagating off the string and propagating along the string, and show that the stationary rotating string emits gravitational waves toward the directions specified by discrete angles from the rotation axis. Waveforms, polarizations, and amplitudes which depend on the direction are shown explicitly.
Motion of a test particle plays an important role in understanding the properties of a spacetime. As a new type of the strong gravity system, boson stars could mimic black holes located at the center of galaxies. Studying the motion of a test particle in the spacetime of a rotating boson star will provide the astrophysical observable effects if a boson star is located at the center of a galaxy. In this paper, we investigate the timelike geodesic of a test particle in the background of a rotating boson star with angular number $m=(1, 2, 3)$. With the change of angular number and frequency, a rotating boson star will transform from the low rotating state to the highly relativistic rapidly rotating state, the corresponding Lense-Thirring effects will be more and more significant and it should be studied in detail. By solving the four-velocity of a test particle and integrating the geodesics, we investigate the bound orbits with a zero and nonzero angular momentum. We find that a test particle can stay more longer time in the central region of a boson star when the boson star becomes from low rotating state to highly relativistic rotating state. Such behaviors of the orbits are quite different from the orbits in a Kerr black hole, and the observable effects from these orbits will provide a rule to investigate the astrophysical compact objects in the Galactic center.